Electric-Field-Induced Reorientation of Liquid Crystalline p-Cyanophenyl-p-n-Alkylbenzoates: A Time-Resolved Study by Fourier Transform Infrared Transmission and Attenuated Total Reflection Spectroscopy

2003 ◽  
Vol 57 (5) ◽  
pp. 499-505 ◽  
Author(s):  
E. Klimov ◽  
M. Fuelleborn ◽  
H. W. Siesler

Time-resolved polarization Fourier transform infrared (FT-IR) transmission and attenuated total reflection (ATR) spectroscopy were applied to investigate the reorientation phenomena of the three members of the homologous series of nematic liquid crystalline p-cyanophenyl-p-n-alkylbenzoates 6CPB, 7CPB, and 10CPB under the external perturbation of an electric field. In conjunction with a newly constructed measurement cell, this method allowed us to differentiate the response of the LC system in the surface layer and in the bulk of the cell at different temperatures and voltages. The relaxation time of the LC molecules close to the wall of the cell was found to be shorter than in the bulk. However, at a field strength of 7 V, the initial orientation in the bulk preceeds the analogous process in the surface region.

2003 ◽  
Vol 57 (3) ◽  
pp. 282-287 ◽  
Author(s):  
Steven A. Macdonald ◽  
Bruno Bureau

Fourier transform infrared transmission (FT-IR) and attenuated total reflection (ATR) spectra of water–ethanol mixtures are recorded and reconstructed thanks to a causal dispersion analysis technique. As expected, the Beer's law technique is an empirical approximate method that cannot account for complex spectral features. On the other hand, a rigorous analysis performed by using the theoretical optical paths for both experimental techniques and Gaussian dispersion analysis (GDA) allows the dielectric functions of the pure liquids to be calculated. Simulations of the whole mid-infrared spectra in the range 500–4000 cm−1 match the experimental data very well, whatever the water–ethanol mixtures. This method is a powerful tool to quantify such model mixtures and more generally could be the first step toward software for assistance to the FT-IR spectrum analysis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam D. Morris ◽  
Camilo L. M. Morais ◽  
Kássio M. G. Lima ◽  
Daniel L. D. Freitas ◽  
Mark E. Brady ◽  
...  

AbstractThe current lack of a reliable biomarker of disease activity in anti-neutrophil cytoplasmic autoantibody (ANCA) associated vasculitis poses a significant clinical unmet need when determining relapsing or persisting disease. In this study, we demonstrate for the first time that attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy offers a novel and functional candidate biomarker, distinguishing active from quiescent disease with a high degree of accuracy. Paired blood and urine samples were collected within a single UK centre from patients with active disease, disease remission, disease controls and healthy controls. Three key biofluids were evaluated; plasma, serum and urine, with subsequent chemometric analysis and blind predictive model validation. Spectrochemical interrogation proved plasma to be the most conducive biofluid, with excellent separation between the two categories on PC2 direction (AUC 0.901) and 100% sensitivity (F-score 92.3%) for disease remission and 85.7% specificity (F-score 92.3%) for active disease on blind predictive modelling. This was independent of organ system involvement and current ANCA status, with similar findings observed on comparative analysis following successful remission-induction therapy (AUC > 0.9, 100% sensitivity for disease remission, F-score 75%). This promising technique is clinically translatable and warrants future larger study with longitudinal data, potentially aiding earlier intervention and individualisation of treatment.


Sign in / Sign up

Export Citation Format

Share Document