fourier transform infrared microspectroscopy
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 32)

H-INDEX

34
(FIVE YEARS 2)

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Emmanuel Estève ◽  
David Buob ◽  
Frédéric Jamme ◽  
Chantal Jouanneau ◽  
Slavka Kascakova ◽  
...  

Renal oxalosis is a rare cause of renal failure whose diagnosis can be challenging. Synchrotron deep ultraviolet (UV) fluorescence was assayed to improve oxalosis detection on kidney biopsies spatial resolution and sensitivity compared with the Fourier transform infrared microspectroscopy gold standard. The fluorescence spectrum of synthetic mono-, di- and tri-hydrated calcium oxalate was investigated using a microspectrometer coupled to the synchrotron UV beamline DISCO, Synchrotron SOLEIL, France. The obtained spectra were used to detect oxalocalcic crystals in a case control study of 42 human kidney biopsies including 19 renal oxalosis due to primary (PHO, n = 11) and secondary hyperoxaluria (SHO, n = 8), seven samples from PHO patients who received combined kidney and liver transplants, and 16 controls. For all oxalocalcic hydrates samples, a fluorescence signal is detected at 420 nm. These spectra were used to identify standard oxalocalcic crystals in patients with PHO or SHO. They also revealed micrometric crystallites as well as non-aggregated oxalate accumulation in tubular cells. A nine-points histological score was established for the diagnosis of renal oxalosis with 100% specificity (76–100) and a 73% sensitivity (43–90). Oxalate tubular accumulation and higher histological score were correlated to lower estimated glomerular filtration rate and higher urinary oxalate over creatinine ratio.


2021 ◽  
Author(s):  
Agnès Réjasse ◽  
Jehan Waeytens ◽  
Ariane Deniset-Besseau ◽  
Nicolas Crapart ◽  
Christina Nielsen-Leroux ◽  
...  

Environmental pollution by non-biodegradable polyethylene (PE) plastics is of major concern, thus, organisms capable of bio-degrading PE are required. The larvae of the Greater Wax Moth, Galleria mellonella (Gm), were identified as a potential candidate to digest PE. In this study, we tested whether PE was metabolized by Gm larvae and could found in their tissues. We examined the implication of the larval gut microbiota by using conventional and axenic reared insects. First, our study showed that neither beeswax nor PE alone favour the growth of young larvae. We then used Fourier-Transform Infrared Microspectroscopy (microFTIR) to detect deuterium in larvae fed with isotopically labelled food. Perdeuterated molecules were found in most tissues of larvae fed with deuterium labelled oil for 72 hours proving that microFTIR can detect metabolization of 1-2 mg of deuterated food. No bio-assimilation was detected in the tissues of larvae fed with 1-5 mg of perdeuterated PED4 for 72 hours and 19-21 days, but micron sized PE particles were found in the larval digestive tract cavities. We evidenced weak bio-degradation of PE films in contact for 24 hours with the dissected gut of conventional larvae; and in the PED4 particles from excreted larval frass. Our study confirms that Gm larvae can bio-degrade PE but can not necessarily metabolize it.


2021 ◽  
Vol 22 (19) ◽  
pp. 10742
Author(s):  
Tommaso Vannocci ◽  
Luca Quaroni ◽  
Antonio de Riso ◽  
Giulia Milordini ◽  
Magda Wolna ◽  
...  

We used infrared (IR) microscopy to monitor in real-time the metabolic turnover of individual mammalian cells in morphologically different states. By relying on the intrinsic absorption of mid-IR light by molecular components, we could discriminate the metabolism of adherent cells as compared to suspended cells. We identified major biochemical differences between the two cellular states, whereby only adherent cells appeared to rely heavily on glycolytic turnover and lactic fermentation. We also report spectroscopic variations that appear as spectral oscillations in the IR domain, observed only when using synchrotron infrared radiation. We propose that this effect could be used as a reporter of the cellular conditions. Our results are instrumental in establishing IR microscopy as a label-free method for real-time metabolic studies of individual cells in different morphological states, and in more complex cellular ensembles.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Agnieszka M. Banas ◽  
Krzysztof Banas ◽  
Trang T. T. Chu ◽  
Renugah Naidu ◽  
Paul Edward Hutchinson ◽  
...  

AbstractMalaria, caused by parasites of the species Plasmodium, is among the major life-threatening diseases to afflict humanity. The infectious cycle of Plasmodium is very complex involving distinct life stages and transitions characterized by cellular and molecular alterations. Therefore, novel single-cell technologies are warranted to extract details pertinent to Plasmodium-host cell interactions and underpinning biological transformations. Herein, we tested two emerging spectroscopic approaches: (a) Optical Photothermal Infrared spectroscopy and (b) Atomic Force Microscopy combined with infrared spectroscopy in contrast to (c) Fourier Transform InfraRed microspectroscopy, to investigate Plasmodium-infected erythrocytes. Chemical spatial distributions of selected bands and spectra captured using the three modalities for major macromolecules together with advantages and limitations of each method is presented here. These results indicate that O-PTIR and AFM-IR techniques can be explored for extracting sub-micron resolution molecular signatures within heterogeneous and dynamic samples such as Plasmodium-infected human RBCs.


2021 ◽  
Vol 22 (17) ◽  
pp. 9189
Author(s):  
Izabela Świetlicka ◽  
Siemowit Muszyński ◽  
Carina Prein ◽  
Hauke Clausen-Schaumann ◽  
Attila Aszodi ◽  
...  

The potential of Fourier Transform infrared microspectroscopy (FTIR microspectroscopy) and multivariate analyses were applied for the classification of the frequency ranges responsible for the distribution changes of the main components of articular cartilage (AC) that occur during dietary β-hydroxy-β-methyl butyrate (HMB) supplementation. The FTIR imaging analysis of histological AC sections originating from 35-day old male piglets showed the change in the collagen and proteoglycan contents of the HMB-supplemented group compared to the control. The relative amount of collagen content in the superficial zone increased by more than 23% and in the middle zone by about 17%, while no changes in the deep zone were observed compared to the control group. Considering proteoglycans content, a significant increase was registered in the middle and deep zones, respectively; 62% and 52% compared to the control. AFM nanoindentation measurements collected from animals administered with HMB displayed an increase in AC tissue stiffness by detecting a higher value of Young’s modulus in all investigated AC zones. We demonstrated that principal component analysis and artificial neural networks could be trained with spectral information to distinguish AC histological sections and the group under study accurately. This work may support the use and effectiveness of FTIR imaging combined with multivariate analyses as a quantitative alternative to traditional collagenous tissue-related histology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aleksandra Mieczkowska ◽  
Beatrice Bouvard ◽  
Erick Legrand ◽  
Guillaume Mabilleau

Bone tissue is organized at the molecular level to resist fracture with the minimum of bone material. This implies that several modifications of the extracellular matrix, including enzymatic collagen crosslinking, take place. We previously highlighted the role of several gut hormones in enhancing collagen maturity and bone strength. The present study investigated the effect of proglucagon-derived peptides on osteoblast-mediated collagen post-processing. Briefly, MC3T3-E1 murine osteoblasts were cultured in the presence of glucagon (GCG), [D-Ala²]-glucagon-like peptide-1 ([D-Ala²]-GLP-1), and [Gly²]-glucagon-like peptide-2 ([Gly²]-GLP-2). Gut hormone receptor expression at the mRNA and protein levels were investigated by qPCR and Western blot. Extent of collagen postprocessing was examined by Fourier transform infrared microspectroscopy. GCG and GLP-1 receptors were not evidenced in osteoblast cells at the mRNA and protein levels. However, it is not clear whether the known GLP-2 receptor is expressed. Nevertheless, administration of [Gly²]-GLP-2, but not GCG or [D-Ala²]-GLP-1, led to a dose-dependent increase in collagen maturity and an acceleration of collagen post-processing. This mechanism was dependent on adenylyl cyclase activation. In conclusion, the present study highlighted a direct effect of [Gly²]-GLP-2 to enhance collagen post-processing and crosslinking maturation in murine osteoblast cultures. Whether this effect is translatable to human osteoblasts remains to be elucidated.


2021 ◽  
Vol 37 (4) ◽  
pp. 356-364
Author(s):  
Rungthip Sangpueak ◽  
Piyaporn Phansak ◽  
Kanjana Thumanu ◽  
Supatcharee Siriwong ◽  
Sopone Wongkaew ◽  
...  

This study was to investigate defense mechanisms on cassava induced by salicylic acid formulation (SA) against anthracnose disease. Our results indicated that the SA could reduce anthracnose severity in cassava plants up to 33.3% under the greenhouse condition. The β-1,3-glucanase and chitinase enzyme activities were significantly increased at 24 hours after inoculation (HAI) and decrease at 48 HAI after Colletotrichum gloeosporioides challenge inoculation, respectively, for cassava treated with SA formulation. Synchrotron radiation–based Fourier-transform infrared microspectroscopy spectra revealed changes of the C=H stretching vibration (3,000-2,800 cm−1), pectin (1,740-1,700 cm−1), amide I protein (1,700-1,600 cm−1), amide II protein (1,600-1,500 cm−1), lignin (1,515 cm−1) as well as mainly C–O–C of polysaccharides (1,300-1,100 cm−1) in the leaf epidermal and mesophyll tissues treated with SA formulations, compared to those treated with fungicide carbendazim and distilled water after the challenged inoculation with C. gloeosporioides. The results indicate that biochemical changes in cassava leaf treated with SA played an important role in the enhancement of structural and chemical defense mechanisms leading to reduced anthracnose severity.


Sign in / Sign up

Export Citation Format

Share Document