Spectroscopy and Metal Atom Chemistry

1976 ◽  
Vol 30 (6) ◽  
pp. 573-586 ◽  
Author(s):  
Geoffrey A. Ozin

In the burgeoning field of cryochemistry, analytical spectroscopy has played an important role in helping us to understand the reactions of high temperature chemical species in low temperature condensation reactions. Reactions with transition metal atoms in particular have become an important synthetic method in inorganic and organometallic chemistry. Fascinating new compounds for which there are often no alternative methods of synthesis have been obtained by this technique. The potential importance of the work in terms of catalytic applications and chemical synthesis is very great indeed. Commercial evaporators and cryogenic equipment in compact and convenient forms are now commonly available and it will not be very long before metal vapor synthesis will enter the category of a routine laboratory procedure. Even at this early stage ICI (UK), duPont de Nemours (USA) and Merck (Germany) have initiated exploratory programs in metal vapor chemistry and it is only a matter of time before industrial evaporation plants are modified for large-scale metal vapor synthesis. As the field develops it is becoming increasingly evident that the seemingly unrelated methods of the preparative cryochemist and the matrix spectroscopist are intimately related. In areas such as reaction intermediates, product identification, reaction pathways, thermodynamics and kinetics, reaction feasibility and yields matrix and preparative cryochemistry cover much common ground. An intelligent marriage of the two techniques is proving to be most fruitful. In this survey lecture I will attempt to place in perspective some of the contributions that matrix isolation spectroscopy can make to the field of metal atom chemistry. In order to do this effectively in a 60-minute lecture I will restrict the reaction chemistry to that of Cu, Ag, and Au atoms. The areas to be described will include the controlled aggregation of transition metal atoms, the synthesis and characterization of coordinatively unsaturated transition metal molecular fragments and elusive binuclear compounds, and reaction kinetics using the matrix isolation technique.

Transition metal atoms were first used in chemical synthesis about 15 years ago and they now have an extensive chemistry. This review outlines the development of atom chemistry with emphasis on the fruitful partnership between spectroscopic studies and preparative scale studies of atom reactions. The preparation of organometallic compounds, coordination compounds, metal cluster compounds and catalysts from transition metal atoms are discussed, and the possibility of using atoms on an industrial scale is considered.


2017 ◽  
Vol 19 (34) ◽  
pp. 23113-23121 ◽  
Author(s):  
Zhongxu Wang ◽  
Jingxiang Zhao ◽  
Qinghai Cai

Single transition metal atoms supported by porpyrin-like graphene exhibit high catalytic activity for the electroreduction of CO2.


Doklady BGUIR ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 87-95
Author(s):  
M. S. Baranava ◽  
P. A. Praskurava

The search for fundamental physical laws which lead to stable high-temperature ferromagnetism is an urgent task. In addition to the already synthesized two-dimensional materials, there remains a wide list of possible structures, the stability of which is predicted theoretically. The article suggests the results of studying the electronic properties of MAX3 (M = Cr, Fe, A = Ge, Si, X = S, Se, Te) transition metals based compounds with nanostructured magnetism. The research was carried out using quantum mechanical simulation in specialized VASP software and calculations within the Heisenberg model. The ground magnetic states of twodimensional MAX3 and the corresponding energy band structures are determined. We found that among the systems under study, CrGeTe3 is a semiconductor nanosized ferromagnet. In addition, one is a semiconductor with a bandgap of 0.35 eV. Other materials are antiferromagnetic. The magnetic moment in MAX3 is localized on the transition metal atoms: in particular, the main one on the d-orbital of the transition metal atom (and only a small part on the p-orbital of the chalcogen). For CrGeTe3, the exchange interaction integral is calculated. The mechanisms of the formation of magnetic order was established. According to the obtained exchange interaction integrals, a strong ferromagnetic order is formed in the semiconductor plane. The distribution of the projection density of electronic states indicates hybridization between the d-orbital of the transition metal atom and the p-orbital of the chalcogen. The study revealed that the exchange interaction by the mechanism of superexchange is more probabilistic.


2000 ◽  
Vol 104 (35) ◽  
pp. 8173-8177 ◽  
Author(s):  
Lester Andrews ◽  
Andreas Rohrbacher ◽  
Christopher M. Laperle ◽  
Robert E. Continetti

2021 ◽  
Vol 57 (23) ◽  
pp. 2923-2926
Author(s):  
Yuanyuan Guo ◽  
Li Jiang ◽  
Ari Paavo Seitsonen ◽  
Bodong Zhang ◽  
Joachim Reichert ◽  
...  

Discriminatory on-surface complexation by the natural peptide CsA: up to two K atoms within its macrocycle, Co to residue 9 and the macrocycle, Fe non-selectively.


Sign in / Sign up

Export Citation Format

Share Document