solid argon
Recently Published Documents


TOTAL DOCUMENTS

1136
(FIVE YEARS 23)

H-INDEX

59
(FIVE YEARS 2)

Author(s):  
Vlasta Mohaček-Grošev ◽  
Krešimir Furić ◽  
Vedran Vujnović
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6441
Author(s):  
Justyna Krupa ◽  
Maria Wierzejewska ◽  
Jan Lundell

FTIR spectroscopy was combined with the matrix isolation technique and quantum chemical calculations with the aim of studying complexes of isocyanic acid with sulfur dioxide. The structures of the HNCO…SO2 complexes of 1:1, 1:2 and 2:1 stoichiometry were optimized at the MP2, B3LYPD3, B2PLYPD3 levels of theory with the 6-311++G(3df,3pd) basis set. Five stable 1:1 HNCO⋯SO2 complexes were found. Three of them contain a weak N-H⋯O hydrogen bond, whereas two other structures are stabilized by van der Waals interactions. The analysis of the HNCO/SO2/Ar spectra after deposition indicates that mostly the 1:1 hydrogen-bonded complexes are present in argon matrices, with a small amount of the van der Waals structures. Upon annealing, complexes of the 1:2 stoichiometry were detected, as well.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
A. V. Nikolaev ◽  
E. V. Tkalya
Keyword(s):  

2021 ◽  
Vol 1906 (1) ◽  
pp. 012011
Author(s):  
Xingrong Zheng ◽  
Li Su ◽  
Kaiqiang Xie ◽  
Jingtong Chen ◽  
Yujie Li

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1144
Author(s):  
Barbara Golec ◽  
Magdalena Sałdyka ◽  
Zofia Mielke

The interactions of formaldehyde (FA), glyoxal (Gly) and methylglyoxal (MGly) with hydroxylamine (HA) isolated in solid argon and nitrogen were studied using FTIR spectroscopy and ab initio methods. The spectra analysis indicates the formation of two types of hydrogen-bonded complexes between carbonyl and hydroxylamine in the studied matrices. The cyclic planar complexes are stabilized by O–H⋯O(C), and C–H⋯N interactions and the nonplanar complexes are stabilized by O–H⋯O(C) bond. Formaldehyde was found to form with hydroxylamine, the cyclic planar complex and methylglyoxal, the nonplanar one in both argon and nitrogen matrices. In turn, glyoxal forms with hydroxylamine the most stable nonplanar complex in solid argon, whereas in solid nitrogen, both types of the complex are formed.


2020 ◽  
Vol 539 ◽  
pp. 110928
Author(s):  
Tran Thi Ha ◽  
Duong Dai Phuong ◽  
Pham Thi Minh Hanh ◽  
Ho Khac Hieu

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3498
Author(s):  
Sergey A. Khrapak

Longitudinal and transverse sound velocities of Lennard-Jones systems are calculated at the liquid–solid coexistence using the additivity principle. The results are shown to agree well with the “exact” values obtained from their relations to excess energy and pressure. Some consequences, in particular in the context of the Lindemann’s melting rule and Stokes–Einstein relation between the self-diffusion and viscosity coefficients, are discussed. Comparison with available experimental data on the sound velocities of solid argon at melting conditions is provided.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3014
Author(s):  
Zoran Mazej

Recent development in the synthesis and characterization of noble-gas compounds is reviewed, i.e., noble-gas chemistry reported in the last five years with emphasis on the publications issued after 2017. XeF2 is commercially available and has a wider practical application both in the laboratory use and in the industry. As a ligand it can coordinate to metal centers resulting in [M(XeF2)x]n+ salts. With strong Lewis acids, XeF2 acts as a fluoride ion donor forming [XeF]+ or [Xe2F3]+ salts. Latest examples are [Xe2F3][RuF6]·XeF2, [Xe2F3][RuF6] and [Xe2F3][IrF6]. Adducts NgF2·CrOF4 and NgF2·2CrOF4 (Ng = Xe, Kr) were synthesized and structurally characterized at low temperatures. The geometry of XeF6 was studied in solid argon and neon matrices. Xenon hexafluoride is a well-known fluoride ion donor forming various [XeF5]+ and [Xe2F11]+ salts. A large number of crystal structures of previously known or new [XeF5]+ and [Xe2F11]+ salts were reported, i.e., [Xe2F11][SbF6], [XeF5][SbF6], [XeF5][Sb2F11], [XeF5][BF4], [XeF5][TiF5], [XeF5]5[Ti10F45], [XeF5][Ti3F13], [XeF5]2[MnF6], [XeF5][MnF5], [XeF5]4[Mn8F36], [Xe2F11]2[SnF6], [Xe2F11]2[PbF6], [XeF5]4[Sn5F24], [XeF5][Xe2F11][CrVOF5]·2CrVIOF4, [XeF5]2[CrIVF6]·2CrVIOF4, [Xe2F11]2[CrIVF6], [XeF5]2[CrV2O2F8], [XeF5]2[CrV2O2F8]·2HF, [XeF5]2[CrV2O2F8]·2XeOF4, A[XeF5][SbF6]2 (A = Rb, Cs), Cs[XeF5][BixSb1-xF6]2 (x = ~0.37–0.39), NO2XeF5(SbF6)2, XeF5M(SbF6)3 (M = Ni, Mg, Zn, Co, Cu, Mn and Pd) and (XeF5)3[Hg(HF)]2(SbF6)7. Despite its extreme sensitivity, many new XeO3 adducts were synthesized, i.e., the 15-crown adduct of XeO3, adducts of XeO3 with triphenylphosphine oxide, dimethylsulfoxide and pyridine-N-oxide, and adducts between XeO3 and N-bases (pyridine and 4-dimethylaminopyridine). [Hg(KrF2)8][AsF6]2·2HF is a new example of a compound in which KrF2 serves as a ligand. Numerous new charged species of noble gases were reported (ArCH2+, ArOH+, [ArB3O4]+, [ArB3O5]+, [ArB4O6]+, [ArB5O7]+, [B12(CN)11Ne]−). Molecular ion HeH+ was finally detected in interstellar space. The discoveries of Na2He and ArNi at high pressure were reported. Bonding motifs in noble-gas compounds are briefly commented on in the last paragraph of this review.


Sign in / Sign up

Export Citation Format

Share Document