Core-Based Intrinsic Fiber-Optic Absorption Sensor for the Detection of Volatile Organic Compounds

1995 ◽  
Vol 49 (3) ◽  
pp. 379-385 ◽  
Author(s):  
Gregory L. Klunder ◽  
Richard E. Russo

A core-based intrinsic fiber-optic absorption sensor has been developed and tested for the detection of volatile organic compounds. The distal ends of transmitting and receiving fibers are connected by a small cylindrical section of an optically clear silicone rubber. The silicone rubber acts both as a light pipe and as a selective membrane into which the analyte molecules can diffuse. The sensor has been used to detect volatile organics (trichloroethylene, 1,1-dichloroethylene, and benzene) in both aqueous solutions and in the vapor phase or headspace. Absorption spectra obtained in the near-infrared (near-IR) provide qualitative and quantitative information about the analyte. Water, which has strong broad-band absorption in the near-IR, is excluded from the spectra because of the hydrophobic properties of the silicone rubber. The rate-limiting step is shown to be the diffusion through the Nernstian boundary layer surrounding the sensor and not the diffusion through the silicone polymer. The rate of analyte diffusion into the sensor, as measured by the t90 values (the time required for the sensor to reach 90% of the equilibrium value), is 30 min for measurements in aqueous solutions and approximately 3 min for measurements made in the headspace. The limit of detection obtained with this sensor is approximately 1.1 ppm for trichloroethylene in an aqueous solution.

2018 ◽  
Vol 254 ◽  
pp. 597-602 ◽  
Author(s):  
Felix Y.H. Kutsanedzie ◽  
Lin Hao ◽  
Song Yan ◽  
Qin Ouyang ◽  
Quansheng Chen

2017 ◽  
Vol 19 (5) ◽  
pp. 676-686 ◽  
Author(s):  
Vesta Kohlmeier ◽  
George C. Dragan ◽  
Erwin W. Karg ◽  
Jürgen Schnelle-Kreis ◽  
Dietmar Breuer ◽  
...  

Multi-channel silicone rubber traps represent a new approach towards gas–particle partitioning of aerosols from semi-volatile organic compounds.


2020 ◽  
pp. 113-120
Author(s):  
T.S. Ulanova ◽  
◽  
T.V. Nurislamova ◽  
N.A. Popova ◽  
O.A. Mal'tseva ◽  
...  

The article dwells on results obtained via experimental research on working out a gas chromatography procedure for determining trichloroethylene and tetrachloroethylene in ambient air. Experiments were performed on substances which had low limits of detection with gas-liquid chromatography with electron capture detection (GLC/ECD) when examined substances were absorbed from ambient air on Tenax TA sorbent. Optimal gas chromatography parameters were established with a hardware-software complex based on «Crystal-5000» gas chromatographer and use of a column from IDBPX-VOL series, 60m⋅0.32mm⋅1.8µm, under the following temperatures: column, 50–230о С; evaporator, 250о С; detector, 250о С. The developed capillary gas chromatography procedure allows determining trichloroethylene in concentrations ranging from 0.000146 to 0.00146 mg/m3, and tetrachloroethylene, from 0.000081 to 0.00081 mg/m3 with inaccuracy not exceeding 25.0%. We performed metrological assessment of the procedure and it allowed determining quality of analysis results for trichloroethylene and tetrachloroethylene; they were as follows: precision, 21.97% and 14.3%: repeatability, 4.22% and 3.38%; reproducibility, 5.66% and 4.9%. Limit of detection (LOD) for trichloroethylene and tetrachloroethylene was =0.0000038 mg/dm3 and =0.00000083 mg/dm3 accordingly. Limit of quantitative determination (LOQ) was =0.000013 mg/m3 for trichloroethylene, and = 0.0000028 mg/m3 for tetrachloroethylene. The developed procedure allowed detecting contents of the examined substances in ambient air near a construction site and a dry-cleaner’s, trichloroethylene in a range from 0.00001 mg/m3 to 0.0009 mg/m3, tetrachloroethylene, from 0.000011 mg/m3 to 0.00039 mg/m3. This unified high-sensitive and selective procedure is recommended for systemic control over potentially hazardous volatile organic compounds in ambient air as it allows providing objective and reliable hygienic assessment of chemical safety and quality of the environment and health risk assessment.


2020 ◽  
pp. 113-120
Author(s):  
T.S. Ulanovа ◽  
◽  
T.V. Nurislamova ◽  
N.A. Popova ◽  
O.A. Mal'tseva ◽  
...  

The article dwells on results obtained via experimental research on working out a gas chromatography procedure for determining trichloroethylene and tetrachloroethylene in ambient air. Experiments were performed on substances which had low limits of detection with gas-liquid chromatography with electron capture detection (GLC/ECD) when examined substances were absorbed from ambient air on Tenax TA sorbent. Optimal gas chromatography parameters were established with a hardware-software complex based on «Crystal-5000» gas chromatographer and use of a column from IDBPX-VOL series, 60m⋅0.32mm⋅1.8µm, under the following temperatures: column, 50–230о С; evaporator, 250о С; detector, 250о С. The developed capillary gas chromatography procedure allows determining trichloroethylene in concentrations ranging from 0.000146 to 0.00146 mg/m3, and tetrachloroethylene, from 0.000081 to 0.00081 mg/m3 with inaccuracy not exceeding 25.0%. We performed metrological assessment of the procedure and it allowed determining quality of analysis results for trichloroethylene and tetrachloroethylene; they were as follows: precision, 21.97% and 14.3%: repeatability, 4.22% and 3.38%; reproducibility, 5.66% and 4.9%. Limit of detection (LOD) for trichloroethylene and tetrachloroethylene was =0.0000038 mg/dm3 and =0.00000083 mg/dm3 accordingly. Limit of quantitative determination (LOQ) was =0.000013 mg/m3 for trichloroethylene, and = 0.0000028 mg/m3 for tetrachloroethylene. The developed procedure allowed detecting contents of the examined substances in ambient air near a construction site and a dry-cleaner’s, trichloroethylene in a range from 0.00001 mg/m3 to 0.0009 mg/m3, tetrachloroethylene, from 0.000011 mg/m3 to 0.00039 mg/m3. This unified high-sensitive and selective procedure is recommended for systemic control over potentially hazardous volatile organic compounds in ambient air as it allows providing objective and reliable hygienic assessment of chemical safety and quality of the environment and health risk assessment.


Sign in / Sign up

Export Citation Format

Share Document