scholarly journals The enteric nervous system promotes intestinal health by constraining microbiota composition

PLoS Biology ◽  
2017 ◽  
Vol 15 (2) ◽  
pp. e2000689 ◽  
Author(s):  
Annah S. Rolig ◽  
Erika K. Mittge ◽  
Julia Ganz ◽  
Josh V. Troll ◽  
Ellie Melancon ◽  
...  
2021 ◽  
Vol 9 (8) ◽  
pp. 1723
Author(s):  
Jacques Gonzales ◽  
Justine Marchix ◽  
Laetitia Aymeric ◽  
Catherine Le Berre-Scoul ◽  
Johanna Zoppi ◽  
...  

Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders defined by impaired social interactions and communication with repetitive behaviors, activities, or interests. Gastrointestinal (GI) disturbances and gut microbiota dysbiosis are frequently associated with ASD in childhood. However, it is not known whether microbiota dysbiosis in ASD patients also occurs in adulthood. Further, the consequences of altered gut microbiota on digestive functions and the enteric nervous system (ENS) remain unexplored. Therefore, we studied, in mice, the ability offecal supernatant (FS) from adult ASD patients to induce GI dysfunctions and ENS remodeling. First, the analyses of the fecal microbiota composition in adult ASD patients indicated a reduced α-diversity and increased abundance of three bacterial 16S rRNA gene amplicon sequence variants compared to healthy controls (HC). The transfer of FS from ASD patients (FS–ASD) to mice decreased colonic barrier permeability by 29% and 58% compared to FS–HC for paracellular and transcellular permeability, respectively. These effects are associated with the reduced expression of the tight junction proteins JAM-A, ZO-2, cingulin, and proinflammatory cytokines TNFα and IL1β. In addition, the expression of glial and neuronal molecules was reduced by FS–ASD as compared to FS-HC in particular for those involved in neuronal connectivity (βIII-tubulin and synapsin decreased by 31% and 67%, respectively). Our data suggest that changes in microbiota composition in ASD may contribute to GI alterations, and in part, via ENS remodeling.


2021 ◽  
Author(s):  
M. Kristina Hamilton ◽  
Elena S. Wall ◽  
Karen Guillemin ◽  
Judith S. Eisen

AbstractThe enteric nervous system (ENS) controls many aspects of intestinal homeostasis, including parameters that shape the habitat of microbial residents. Previously we showed that zebrafish lacking an ENS, due to deficiency of the sox10 gene, develop intestinal inflammation and bacterial dysbiosis, with an expansion of proinflammatory Vibrio strains. To understand the primary defects resulting in dysbiosis in sox10 mutants, we investigated how the ENS shapes the intestinal environment in the absence of microbiota and associated inflammatory responses. We found that intestinal transit, intestinal permeability, and luminal pH regulation are all aberrant in sox10 mutants, independent of microbially induced inflammation. Treatment with the proton pump inhibitor, omeprazole, corrected the more acidic luminal pH of sox10 mutants to wild type levels. Omeprazole treatment also prevented overabundance of Vibrio and ameliorated inflammation in sox10 mutant intestines. Treatment with the carbonic anhydrase inhibitor, acetazolamide, caused wild type luminal pH to become more acidic, and increased both Vibrio abundance and intestinal inflammation. We conclude that a primary function of the ENS is to regulate luminal pH, which plays a critical role in shaping the resident microbial community and regulating intestinal inflammation.Author SummaryThe intestinal microbiota is an important determinant of health and disease and is shaped by the environment of the gut lumen. The nervous system of the intestine, the enteric nervous system (ENS), helps maintain many aspects of intestinal health including a healthy microbiota. We used zebrafish with a genetic mutation that impedes ENS formation to investigate how the ENS prevents pathogenic shifts in the microbiota. We found that mutants lacking an ENS have a lower luminal pH, higher load of pathogenic bacteria, and intestinal inflammation. We showed that correcting the low pH, using the commonly prescribed pharmacological agent omeprazole, restored the microbiota and prevented intestinal inflammation. Conversely, we found that lowering the luminal pH of wild type animals, using the drug acetazolamide, caused expansion of pathogenic bacteria and increased intestinal inflammation. From these experiments, we conclude that a primary function of the ENS is to maintain normal luminal pH, thereby constraining intestinal microbiota community composition and promoting intestinal health.


2001 ◽  
Vol 120 (5) ◽  
pp. A328-A328
Author(s):  
H PFANNKUCHE ◽  
J RICHT ◽  
M SCHEMANN ◽  
J SEEGER ◽  
G GAEBEL

2001 ◽  
Vol 120 (5) ◽  
pp. A176-A176
Author(s):  
P KOPPITZ ◽  
M STORR ◽  
D SAUR ◽  
M KURJAK ◽  
H ALLESCHER

Sign in / Sign up

Export Citation Format

Share Document