rat gut
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 18)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Cindy J. Lee ◽  
Tian A. Qiu ◽  
Zhilai Hong ◽  
Zhenkun Zhang ◽  
Yuhao Min ◽  
...  

D-alanine (D-Ala) and several other D-amino acids (D-AAs), unusual amino acids present in mammals, act as hormones and neuromodulators in nervous and endocrine systems. Unlike the endogenously synthesized D-serine in animals, D-Ala may be from exogenous sources, e.g., diet and intestinal microorganisms. However, it is unclear if the capability to produce D-Ala and other D-AAs varies among different microbial strains in the gut. We isolated individual microorganisms of rat gut microbiota and profiled their D-AA secretion in vitro, focusing on D-Ala. Serial dilutions of intestinal content from adult male rats were plated on agar to obtain clonal cultures. Using MALDI-TOF MS for rapid strain typing, we identified 38 unique isolates, grouped into 11 species based on 16S rRNA gene sequences. We then used two-tier screening to profile bacterial D-AA secretion, combining a D-amino acid oxidase-based enzymatic assay for rapid assessment of overall D-AA amount, followed by chiral LC-MS/MS to quantify individual D-AAs, revealing 19 out of the 38 isolated strains as D-AA producers. LC-MS/MS analysis of the eight top D-AA producers showed high levels of D-Ala in all strains tested, with substantial inter- and intra-species variations. Though results from enzymatic assay and LC-MS/MS analysis aligned well, LC-MS/MS further revealed the existence of D-glutamate and D-aspartate, which are poor substrates for enzymatic assay. We observed large inter- and intra-species variation of D-AA secretion profiles from rat gut microbiome species, demonstrating the importance of chemical profiling of gut microbiota in addition to sequencing, furthering the idea that microbial metabolites modulate host physiology.


Chemosphere ◽  
2021 ◽  
Vol 272 ◽  
pp. 129618
Author(s):  
Amir E. Kaziem ◽  
Zongzhe He ◽  
Lianshan Li ◽  
Yong Wen ◽  
Zhen Wang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2 (4/S) ◽  
pp. 93-100
Author(s):  
Begzod Shokirov ◽  
Yulduz Halimova

Antibiotics are the most common medicines used to treat human infectious diseases. Based on their chemical structure, antibiotics mainly include the following categories: quinolones, β-lactams, macrolides, and aminoglycosides among others. The mechanism of different antibiotics varies, and there are four main mechanisms: inhibition of bacterial cell wall synthesis, interaction with cell membranes, interference with protein synthesis, and inhibition of nucleic acid replication and transcription. Antibiotics can act on pathogenic bacteria. Accordingly, antibiotics can also affect normal bacteria that colonize the human body. The size, structure, and function of the microbiota may change in response to antibiotic treatment. Significant changes in the human gut microbiota may be associated with repeated use of antibiotics [3]; in the following days, these changes were restored. However, little is known about comparing the response of the gut microbiota to antibiotic treatment. Probiotics are beneficial to the host when administered in adequate amounts. Lactobacillus rhamnosus was one of the most common probiotics studied by scientists regarding its culture, function, and metabolism [10]. However, the effect of L. rhamnosus present in the gut microbiota on the host's susceptibility to pathogenic bacteria after taking antibiotics has rarely been discussed. In our current study, rats were given two types of antibiotics, namely vancomycin and ampicillin, and their oral and intestinal microbiota was observed at 3 time points.  The rats were treated with antibiotics or L. rhamnosus, and then infected with Salmonella entericaserovarTyphimurium (S. Typhimurium ) via a gastric tube. Fecal samples were then collected to determine the pathogenic load. Ampicillin and vancomycin act in different antimicrobial spectra and have different absorption in the digestive tract. In addition, the concentration of these antibiotics entering the digestive tract varies; these factors can affect the host microbiota. Thus, this study aimed to compare the effects of these antibiotics on the gut microbiota at normal doses, as well as to evaluate the differences in the results. The gut microbiota underwent dramatic changes during the administration period. Changes in the gut microbiota affected the host's susceptibility to pathogens when infected with bacteria due to changes in resistance to colonization.


2021 ◽  
Author(s):  
Justine M. Abais‐Battad ◽  
Fatima L. Saravia ◽  
Hayley Lund ◽  
John Henry Dasinger ◽  
Daniel J. Fehrenbach ◽  
...  

Metabolites ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 142 ◽  
Author(s):  
Nadezda V. Andrianova ◽  
Vasily A. Popkov ◽  
Natalia S. Klimenko ◽  
Alexander V. Tyakht ◽  
Galina V. Baydakova ◽  
...  

Intestinal microbiota play a considerable role in the host’s organism, broadly affecting its organs and tissues. The kidney can also be the target of the microbiome and its metabolites (especially short-chain fatty acids), which can influence renal tissue, both by direct action and through modulation of the immune response. This impact is crucial, especially during kidney injury, because the modulation of inflammation or reparative processes could affect the severity of the resulting damage or recovery of kidney function. In this study, we compared the composition of rat gut microbiota with its outcome, in experimental acute ischemic kidney injury and named the bacterial taxa that play putatively negative or positive roles in the progression of ischemic kidney injury. We investigated the link between serum creatinine, urea, and a number of metabolites (acylcarnitines and amino acids), and the relative abundance of various bacterial taxa in rat feces. Our analysis revealed an increase in levels of 32 acylcarnitines in serum, after renal ischemia/reperfusion and correlation with creatinine and urea, while levels of three amino acids (tyrosine, tryptophan, and proline) had decreased. We detected associations between bacterial abundance and metabolite levels, using a compositionality-aware approach—Rothia and Staphylococcus levels were positively associated with creatinine and urea levels, respectively. Our findings indicate that the gut microbial community contains specific members whose presence might ameliorate or, on the contrary, aggravate ischemic kidney injury. These bacterial taxa could present perspective targets for therapeutical interventions in kidney pathologies, including acute kidney injury.


2020 ◽  
Vol 64 (6) ◽  
pp. 1900912 ◽  
Author(s):  
Qianrui Wang ◽  
Bert Spenkelink ◽  
Rungnapa Boonpawa ◽  
Ivonne M. C. M. Rietjens ◽  
Karsten Beekmann

2019 ◽  
Vol 84 (4) ◽  
pp. 824-831
Author(s):  
Ryodai Takagaki ◽  
Chiyo Yoshizane ◽  
Yuki Ishida ◽  
Takeo Sakurai ◽  
Yoshifumi Taniguchi ◽  
...  

2019 ◽  
Author(s):  
Robin Mesnage ◽  
Maxime Teixeira ◽  
Daniele Mandrioli ◽  
Laura Falcioni ◽  
Quinten Raymond Ducarmon ◽  
...  

AbstractThere is intense debate as to whether glyphosate can interfere with aromatic amino acid biosynthesis in microorganisms inhabiting the gastrointestinal tract, which could potentially lead to negative health outcomes. We have addressed this major gap in glyphosate toxicology by using a multi-omics strategy combining shotgun metagenomics and metabolomics. We tested whether glyphosate (0.5, 50, 175 mg/kg bw/day), or its representative EU commercial herbicide formulation MON 52276 at the same glyphosate equivalent doses, has an effect on the rat gut microbiome in a 90-day subchronic toxicity test. Clinical biochemistry measurements in blood and histopathological evaluations showed that MON 52276 but not glyphosate was associated with statistically significant increase in hepatic steatosis and necrosis. Similar lesions were also present in the liver of glyphosate-treated groups but not in the control group. Caecum metabolomics revealed that glyphosate inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase in the shikimate pathway as evidenced by an accumulation of shikimic acid and 3-dehydroshikimic acid. Levels of caecal microbiome dipeptides involved in the regulation of redox balance (γ-glutamylglutamine, cysteinylglycine, valylglycine) had their levels significantly increased. Shotgun metagenomics showed that glyphosate affected caecum microbial community structure and increased levels of Eggerthella spp. and Homeothermacea spp.. MON 52276, but not glyphosate, increased the relative abundance of Shinella zoogleoides. Since Shinella spp. are known to degrade alkaloids, its increased abundance may explain the decrease in solanidine levels measured with MON 52776 but not glyphosate. Other glyphosate formulations may have different effects since Roundup® GT Plus inhibited bacterial growth in vitro at concentrations at which MON 52276 did not present any visible effect. Our study highlights the power of a multiomics approach to investigate effects of pesticides on the gut microbiome. This revealed the first biomarker of glyphosate effects on rat gut microbiome. Although more studies will be needed to ascertain if there are health implications arising from glyphosate inhibition of the shikimate pathway in the gut microbiome, our findings can be used in environmental epidemiological studies to understand if glyphosate can have biological effects in human populations.Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document