scholarly journals Entraining neurons via noninvasive electric stimulation improves cognition

PLoS Biology ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. e3000931
Author(s):  
Mircea van der Plas ◽  
Simon Hanslmayr

Transcranial Alternating Current Stimulation (tACS) is a method that injects rhythmic currents into the human brain via electrodes attached to the scalp of a participant. This technique allows researchers to control naturally occurring brain rhythms and study their causal relevance for cognition. Recent findings, however, cast doubts on the effectiveness of tACS to stimulate the brain and its mode of action. Two new studies by Vieira and colleagues and Marchesotti and colleagues reported in the current issue report promising new results in showing that tACS can entrain single neuron activity and improve reading abilities in dyslexic individuals.

Brain ◽  
2020 ◽  
Vol 143 (3) ◽  
pp. 833-843 ◽  
Author(s):  
Shaun R Patel ◽  
Jesus J Ballesteros ◽  
Omar J Ahmed ◽  
Pamela Huang ◽  
Jessica Briscoe ◽  
...  

Abstract How the brain recovers from general anaesthesia is poorly understood. Neurocognitive problems during anaesthesia recovery are associated with an increase in morbidity and mortality in patients. We studied intracortical neuronal dynamics during transitions from propofol-induced unconsciousness into consciousness by directly recording local field potentials and single neuron activity in a functionally and anatomically interconnecting somatosensory (S1, S2) and ventral premotor (PMv) network in primates. Macaque monkeys were trained for a behavioural task designed to determine trial-by-trial alertness and neuronal response to tactile and auditory stimulation. We found that neuronal dynamics were dissociated between S1 and higher-order PMv prior to return of consciousness. The return of consciousness was distinguishable by a distinctive return of interregionally coherent beta oscillations and disruption of the slow-delta oscillations. Clustering analysis demonstrated that these state transitions between wakefulness and unconsciousness were rapid and unstable. In contrast, return of pre-anaesthetic task performance was observed with a gradual increase in the coherent beta oscillations. We also found that recovery end points significantly varied intra-individually across sessions, as compared to a rather consistent loss of consciousness time. Recovery of single neuron multisensory responses appeared to be associated with the time of full performance recovery rather than the length of recovery time. Similar to loss of consciousness, return of consciousness was identified with an abrupt shift of dynamics and the regions were dissociated temporarily during the transition. However, the actual dynamics change during return of consciousness is not simply an inverse of loss of consciousness, suggesting a unique process.


1997 ◽  
Vol 272 (2) ◽  
pp. R532-R540 ◽  
Author(s):  
K. Ota ◽  
T. Katafuchi ◽  
A. Takaki ◽  
T. Hori

The single neuron activity in the anteroventral region of the third ventricle (AV3V) was extracellularly recorded in urethan and alpha-chloralose anesthetized rats. Electrical stimulation of the medial preoptic area (mPOA) and the paraventricular nucleus (PVN) revealed a reciprocal neural connection between the AV3V and these hypothalamic nuclei with an ipsilateral preponderance. All the AV3V neurons, which were antidromically activated by the stimulation of the mPOA or the PVN, altered their activity after the systemic injection of interleukin (IL)-1beta. On the other hand, only about 60% of the AV3V neurons that showed orthodromic responses were affected by IL-1beta. In seven of nine AV3V neurons that were electrophysiologically identified to send their axons to the mPOA or the PVN, the recombinant human IL-1beta-induced excitation and inhibition were attenuated by a local application of sodium salicylate through multibarreled micropipettes. These results suggest that the AV3V neurons alter their activity in response to the blood-borne IL-1beta, at least in part, through a local synthesis of prostanoids and then send the information to the mPOA and PVN.


Sign in / Sign up

Export Citation Format

Share Document