scholarly journals Analysis of a Gene Regulatory Cascade Mediating Circadian Rhythm in Zebrafish

2013 ◽  
Vol 9 (2) ◽  
pp. e1002940 ◽  
Author(s):  
Ying Li ◽  
Guang Li ◽  
Haifang Wang ◽  
Jiulin Du ◽  
Jun Yan
2011 ◽  
Vol 22 (1) ◽  
pp. 66-77 ◽  
Author(s):  
Nicole Cremona ◽  
Kristine Potter ◽  
Jo Ann Wise

To determine the relative importance of transcriptional regulation versus RNA processing and turnover during the transition from proliferation to meiotic differentiation in the fission yeast Schizosaccharomyces pombe, we analyzed temporal profiles and effects of RNA surveillance factor mutants on expression of 32 meiotic genes. A comparison of nascent transcription with steady-state RNA accumulation reveals that the vast majority of these genes show a lag between maximal RNA synthesis and peak RNA accumulation. During meiosis, total RNA levels parallel 3′ processing, which occurs in multiple, temporally distinct waves that peak from 3 to 6 h after meiotic induction. Most early genes and one middle gene, mei4, share a regulatory mechanism in which a specialized RNA surveillance factor targets newly synthesized transcripts for destruction. Mei4p, a member of the forkhead transcription factor family, in turn regulates a host of downstream genes. Remarkably, a spike in transcription is observed for less than one-third of the genes surveyed, and even these show evidence of RNA-level regulation. In aggregate, our findings lead us to propose that a regulatory cascade driven by changes in processing and stability of newly synthesized transcripts operates alongside the well-known transcriptional cascade as fission yeast cells enter meiosis.


2008 ◽  
Vol 4 (10) ◽  
pp. e1000193 ◽  
Author(s):  
Jun Yan ◽  
Haifang Wang ◽  
Yuting Liu ◽  
Chunxuan Shao

PLoS Biology ◽  
2011 ◽  
Vol 9 (1) ◽  
pp. e1000568 ◽  
Author(s):  
Sebastián Cachero ◽  
T. Ian Simpson ◽  
Petra I. zur Lage ◽  
Lina Ma ◽  
Fay G. Newton ◽  
...  

2018 ◽  
Author(s):  
Ming-Yueh Wu ◽  
Matthew E. Mead ◽  
Mi-Kyung Lee ◽  
Sun-Chang Kim ◽  
Antonis Rokas ◽  
...  

AbstractAsexual sporulation is fundamental to the ecology and lifestyle of filamentous fungi and can facilitate both plant and human infection. InAspergillus, the production of asexual spores is primarily governed by the BrlA→AbaA→WetA regulatory cascade. The final step in this cascade is controlled by the WetA protein and not only governs the morphological differentiation of spores but also the production and deposition of diverse metabolites into spores. While WetA is conserved across the genusAspergillus, the structure and degree of conservation of thewetAgene regulatory network (GRN) remains largely unknown. We carried out comparative transcriptome analyses betweenwetAnull mutant and wild type asexual spores in three representative species spanning the diversity of the genusAspergillus:A. nidulans, A. flavus, andA. fumigatus. We discovered that WetA regulates asexual sporulation in all three species via a negative feedback loop that represses BrlA, the cascade’s first step. Furthermore, ChIP-seq experiments inA. nidulansasexual spores suggest that WetA is a DNA-binding protein that interacts with a novel regulatory motif. Several global regulators known to bridge spore production and the production of secondary metabolites show species-specific regulatory patterns in our data. These results suggest that the BrlA→AbaA→WetA cascade’s regulatory role in cellular and chemical asexual spore development is functionally conserved, but that thewetA-associated GRN has diverged duringAspergillusevolution.


Development ◽  
2021 ◽  
Vol 148 (15) ◽  
Author(s):  
Robb Krumlauf ◽  
David G. Wilkinson

ABSTRACT During early development, the hindbrain is sub-divided into rhombomeres that underlie the organisation of neurons and adjacent craniofacial tissues. A gene regulatory network of signals and transcription factors establish and pattern segments with a distinct anteroposterior identity. Initially, the borders of segmental gene expression are imprecise, but then become sharply defined, and specialised boundary cells form. In this Review, we summarise key aspects of the conserved regulatory cascade that underlies the formation of hindbrain segments. We describe how the pattern is sharpened and stabilised through the dynamic regulation of cell identity, acting in parallel with cell segregation. Finally, we discuss evidence that boundary cells have roles in local patterning, and act as a site of neurogenesis within the hindbrain.


Sign in / Sign up

Export Citation Format

Share Document