rna surveillance
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 42)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Vol 22 (24) ◽  
pp. 13401
Author(s):  
Koichi Ogami ◽  
Hiroshi I. Suzuki

The genome is pervasively transcribed across various species, yielding numerous non-coding RNAs. As a counterbalance for pervasive transcription, various organisms have a nuclear RNA exosome complex, whose structure is well conserved between yeast and mammalian cells. The RNA exosome not only regulates the processing of stable RNA species, such as rRNAs, tRNAs, small nucleolar RNAs, and small nuclear RNAs, but also plays a central role in RNA surveillance by degrading many unstable RNAs and misprocessed pre-mRNAs. In addition, associated cofactors of RNA exosome direct the exosome to distinct classes of RNA substrates, suggesting divergent and/or multi-layer control of RNA quality in the cell. While the RNA exosome is essential for cell viability and influences various cellular processes, mutations and alterations in the RNA exosome components are linked to the collection of rare diseases and various diseases including cancer, respectively. The present review summarizes the relationships between pervasive transcription and RNA exosome, including evolutionary crosstalk, mechanisms of RNA exosome-mediated RNA surveillance, and physiopathological effects of perturbation of RNA exosome.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu H. Sun ◽  
Ruoqiao Huiyi Wang ◽  
Khai Du ◽  
Jiang Zhu ◽  
Jihong Zheng ◽  
...  

AbstractPIWI-interacting small RNAs (piRNAs) protect the germline genome and are essential for fertility. piRNAs originate from transposable element (TE) RNAs, long non-coding RNAs, or 3´ untranslated regions (3´UTRs) of protein-coding messenger genes, with the last being the least characterized of the three piRNA classes. Here, we demonstrate that the precursors of 3´UTR piRNAs are full-length mRNAs and that post-termination 80S ribosomes guide piRNA production on 3´UTRs in mice and chickens. At the pachytene stage, when other co-translational RNA surveillance pathways are sequestered, piRNA biogenesis degrades mRNAs right after pioneer rounds of translation and fine-tunes protein production from mRNAs. Although 3´UTR piRNA precursor mRNAs code for distinct proteins in mice and chickens, they all harbor embedded TEs and produce piRNAs that cleave TEs. Altogether, we discover a function of the piRNA pathway in fine-tuning protein production and reveal a conserved piRNA biogenesis mechanism that recognizes translating RNAs in amniotes.


2021 ◽  
Author(s):  
gerson caraballo ◽  
Romel Rosales ◽  
Mercedes Viettri ◽  
Siyuan Ding ◽  
Harry B Greenberg ◽  
...  

Dengue virus (DENV) NS1 is a multifunctional protein essential for viral replication. To gain insights into NS1 functions in mosquito cells, the protein interactome of DENV NS1 in C6/36 cells was investigated using a proximity biotinylation system and mass spectrometry. Approximately 14% of the 817 identified proteins coincide with interactomes obtained in vertebrate cells, including ontology groups of the oligosaccharide transferase complex, the chaperonin containing TCP-1, and nuclear import and export, vesicle localization and ribosomal proteins. Notably, other protein pathways such as epigenetic regulation and RNA silencing, not previously reported in vertebrate cells, were also found in the NS1 interactome in mosquito cells. Due to the novel interaction observed for NS1 and DIDO1 (Death Inducer-Obliterator 1), we further explored the role of DIDO1 in viral replication. Interactions between NS1 and DIDO1were corroborated in infected C6/36 and Aag2 cells, by colocalization and proximity ligation assays. Silencing DIDO1 expression in C6/36 and Aag2 cells results in a significant reduction in DENV and ZIKV replication and progeny production. Comparison of transcription analysis of mock or DENV infected C6/36 silenced for DIDO1, revealed variations in multiple gene expression pathways, including pathways associated with DENV infection such as RNA surveillance, IMD and Toll. These results suggest that DIDO1 is a host factor involved in the negative modulation of the antiviral response and necessary for flavivirus replication. Our findings uncover novel mechanisms of NS1 to promote DENV and ZIKV replication and add to the understanding of NS1 as a multifunctional protein.


2021 ◽  
Vol 7 (3) ◽  
pp. 44
Author(s):  
Sara Andjus ◽  
Antonin Morillon ◽  
Maxime Wery

The Nonsense-Mediated mRNA Decay (NMD) has been classically viewed as a translation-dependent RNA surveillance pathway degrading aberrant mRNAs containing premature stop codons. However, it is now clear that mRNA quality control represents only one face of the multiple functions of NMD. Indeed, NMD also regulates the physiological expression of normal mRNAs, and more surprisingly, of long non-coding (lnc)RNAs. Here, we review the different mechanisms of NMD activation in yeast and mammals, and we discuss the molecular bases of the NMD sensitivity of lncRNAs, considering the functional roles of NMD and of translation in the metabolism of these transcripts. In this regard, we describe several examples of functional micropeptides produced from lncRNAs. We propose that translation and NMD provide potent means to regulate the expression of lncRNAs, which might be critical for the cell to respond to environmental changes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Julián Naipauer ◽  
Martín E. García Solá ◽  
Daria Salyakina ◽  
Santas Rosario ◽  
Sion Williams ◽  
...  

Regulatory pathways involving non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNA), have gained great relevance due to their role in the control of gene expression modulation. Using RNA sequencing of KSHV Bac36 transfected mouse endothelial cells (mECK36) and tumors, we have analyzed the host and viral transcriptome to uncover the role lncRNA-miRNA-mRNA driven networks in KSHV tumorigenesis. The integration of the differentially expressed ncRNAs, with an exhaustive computational analysis of their experimentally supported targets, led us to dissect complex networks integrated by the cancer-related lncRNAs Malat1, Neat1, H19, Meg3, and their associated miRNA-target pairs. These networks would modulate pathways related to KSHV pathogenesis, such as viral carcinogenesis, p53 signaling, RNA surveillance, and cell cycle control. Finally, the ncRNA-mRNA analysis allowed us to develop signatures that can be used to an appropriate identification of druggable gene or networks defining relevant AIDS-KS therapeutic targets.


2021 ◽  
Author(s):  
Yujin Chun ◽  
Sungwook Han ◽  
Taemook Kim ◽  
Yoonjung Choi ◽  
Daeyoup Lee

The 3D architecture that the genome is folded into is regulated by CTCF, which determines domain borders, and cohesin, which generates interactions within domains. However, organisms lacking CTCF have been reported to still have cohesin-mediated 3D structures with strong borders. How this can be achieved and precisely regulated are yet unknown. Using in situ Hi-C, we found that 3'-end RNA processing factors coupled with proper transcription termination are a cis-acting determinant that regulates the localization and dynamics of cohesin on the chromosome arms. Loss of RNA processing factors, including nuclear exosome and Pfs2, destabilizes cohesin from the 3'-ends of convergent genes and results in decreased cohesin-mediated domain boundaries. We observed the co-localization between Rad21 and a wide range of 3'end RNA processing/termination factors. Further, deletion of Rrp6 leads to cohesin redistribution to facultative heterochromatin, resulting in improper domain boundaries. Importantly, we observed that knockdown of Rrp6/Exosc10 caused a defect in cohesin binding and loss of local topologically associating domains (TADs) interactions in mouse embryonic stem cells. Based on these findings, we propose a novel function of the RNA surveillance pathway in 3D genome organization via cohesin complex, which provides the molecular basis underlying the dynamics of cohesin function.


2021 ◽  
Author(s):  
Lucia Martin Caballero ◽  
Matias Capella ◽  
Ramon Ramos Barrales ◽  
Nikolay Dobrev ◽  
Thomas S van Emden ◽  
...  

Transcriptionally silent chromatin often localizes to the nuclear periphery. However, whether the nuclear envelope (NE) is a site for post-transcriptional gene repression is unknown. Here we demonstrate that S. pombe Lem2, an NE protein, regulates nuclear exosome-mediated RNA degradation. Lem2 deletion causes accumulation of non-coding RNAs and meiotic transcripts. Indeed, an engineered exosome substrate RNA shows Lem2-dependent localization to the nuclear periphery. Lem2 does not directly bind RNA, but instead physically interacts with the exosome-targeting MTREC complex and promotes RNA recruitment. The Lem2-assisted pathway acts independently of nuclear bodies where exosome factors assemble, revealing that multiple spatially distinct degradation pathways exist. The Lem2 pathway is environmentally responsive: nutrient availability modulates Lem2 regulation of meiotic transcripts. Our data indicate that Lem2 recruits exosome co-factors to the nuclear periphery to coordinate RNA surveillance and regulates transcripts during the mitosis-to-meiosis switch.


2021 ◽  
Author(s):  
Zhongsheng You ◽  
Abigael Cheruiyot ◽  
Shan Li ◽  
Sridhar Nonavinkere Srivatsan ◽  
Tanzir Ahmed ◽  
...  

Nonsense-mediated RNA decay (NMD) is well recognized as an RNA surveillance pathway that targets aberrant mRNAs with premature translation termination codons (PTCs) for degradation; however, its molecular mechanisms and roles in health and disease remain incompletely understood. In this study, we developed a novel reporter system that can accurately measure NMD activity in individual cells. By carrying out a genome-wide CRISPR/Cas9 knockout screen using this reporter system, we identified novel NMD-promoting factors, including multiple components of the SF3B complex and other U2 spliceosome factors. Interestingly, we also found that cells with mutations in the U2 spliceosome genes SF3B1 and U2AF1, which are commonly found in myelodysplastic syndrome (MDS) and cancers, have overall attenuated NMD activity. Furthermore, we found that compared to wild type cells, SF3B1 and U2AF1 mutant cells are more sensitive to NMD inhibition, a phenotype that is accompanied by elevated DNA replication obstruction, DNA damage and chromosomal instability. Remarkably, the sensitivity of spliceosome mutant cells to NMD inhibition could be rescued by overexpression of RNase H1, which removes R-loops in the genome. Together, our findings shed new light on the functional interplay between NMD and RNA splicing and suggest a novel strategy for the treatment of MDS and cancers with spliceosome mutations.


2021 ◽  
Author(s):  
Julián Naipauer ◽  
Martín E. García Solá ◽  
Daria Salyakina ◽  
Santas Rosario ◽  
Sion Williams ◽  
...  

ABSTRACTRegulatory pathways involving non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) and long non-coding RNAs (lncRNA) have gained great relevance due to their role in the control of gene expression modulation. Using RNA sequencing of KSHV Bac36 transfected mouse endothelial cells (mECK36) and tumors, we have analyzed the host and viral transcriptome to uncover the role lncRNA-miRNA-mRNA driven networks in KSHV tumorigenesis. The integration of the differentially expressed ncRNAs, with an exhaustive computational analysis of their experimentally supported targets, led us to dissect complex networks integrated by the cancer-related lncRNAs Malat, Neat1, H19, Meg3 and their associated miRNA-target pairs. These networks would modulate pathways related to KSHV pathogenesis, such as viral carcinogenesis, p53 signaling, RNA surveillance, and Cell cycle control. Finally, the ncRNA-mRNA analysis allowed us to develop signatures that can be used to an appropriate identification of druggable gene or networks defining relevant AIDS-KS therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document