scholarly journals Exact neural mass model for synaptic-based working memory

2020 ◽  
Vol 16 (12) ◽  
pp. e1008533
Author(s):  
Halgurd Taher ◽  
Alessandro Torcini ◽  
Simona Olmi

A synaptic theory of Working Memory (WM) has been developed in the last decade as a possible alternative to the persistent spiking paradigm. In this context, we have developed a neural mass model able to reproduce exactly the dynamics of heterogeneous spiking neural networks encompassing realistic cellular mechanisms for short-term synaptic plasticity. This population model reproduces the macroscopic dynamics of the network in terms of the firing rate and the mean membrane potential. The latter quantity allows us to gain insight of the Local Field Potential and electroencephalographic signals measured during WM tasks to characterize the brain activity. More specifically synaptic facilitation and depression integrate each other to efficiently mimic WM operations via either synaptic reactivation or persistent activity. Memory access and loading are related to stimulus-locked transient oscillations followed by a steady-state activity in the β-γ band, thus resembling what is observed in the cortex during vibrotactile stimuli in humans and object recognition in monkeys. Memory juggling and competition emerge already by loading only two items. However more items can be stored in WM by considering neural architectures composed of multiple excitatory populations and a common inhibitory pool. Memory capacity depends strongly on the presentation rate of the items and it maximizes for an optimal frequency range. In particular we provide an analytic expression for the maximal memory capacity. Furthermore, the mean membrane potential turns out to be a suitable proxy to measure the memory load, analogously to event driven potentials in experiments on humans. Finally we show that the γ power increases with the number of loaded items, as reported in many experiments, while θ and β power reveal non monotonic behaviours. In particular, β and γ rhythms are crucially sustained by the inhibitory activity, while the θ rhythm is controlled by excitatory synapses.

2020 ◽  
Author(s):  
Halgurd Taher ◽  
Alessandro Torcini ◽  
Simona Olmi

AbstractA synaptic theory of Working Memory (WM) has been developed in the last decade as a possible alternative to the persistent spiking paradigm. In this context, we have developed a neural mass model able to reproduce exactly the dynamics of heterogeneous spiking neural networks encompassing realistic cellular mechanisms for short-term synaptic plasticity. This population model reproduces the macroscopic dynamics of the network in terms of the firing rate and the mean membrane potential. The latter quantity allows us to get insigth on Local Field Potential and electroencephalographic signals measured during WM tasks to characterize the brain activity. More specifically synaptic facilitation and depression integrate each other to efficiently mimic WM operations via either synaptic reactivation or persistent activity. Memory access and loading are associated to stimulus-locked transient oscillations followed by a steady-state activity in the β-γ band, thus resembling what observed in the cortex during vibrotactile stimuli in humans and object recognition in monkeys. Memory juggling and competition emerge already by loading only two items. However more items can be stored in WM by considering neural architectures composed of multiple excitatory populations and a common inhibitory pool. Memory capacity depends strongly on the presentation rate of the items and it maximizes for an optimal frequency range. In particular we provide an analytic expression for the maximal memory capacity. Furthermore, the mean membrane potential turns out to be a suitable proxy to measure the memory load, analogously to event driven potentials in experiments on humans. Finally we show that the γ power increases with the number of loaded items, as reported in many experiments, while θ and β power reveal non monotonic behaviours. In particular, β and γ rhytms are crucially sustained by the inhibitory activity, while the θ rhythm is controlled by excitatory synapses.Author summaryWorking Memory (WM) is the ability to temporarily store and manipulate stimuli representations that are no longer available to the senses. We have developed an innovative coarse-grained population model able to mimic several operations associated to WM. The novelty of the model consists in reproducing exactly the dynamics of spiking neural networks with realistic synaptic plasticity composed of hundreds of thousands neurons in terms of a few macroscopic variables. These variables give access to experimentally measurable quantities such as local field potentials and electroencephalografic signals. Memory operations are joined to sustained or transient oscillations emerging in different frequency bands, in accordance with experimental results for primate and humans performing WM tasks. We have designed an architecture composed of many excitatory populations and a common inhibitory pool able to store and retain several memory items. The capacity of our multi-item architecture is around 3-5 items, a value corresponding to the WM capacities measured in many experiments. Furthermore, the maximal capacity is achievable only for presentation rates within an optimal frequency range. Finally, we have defined a measure of the memory load analogous to the event-related potentials employed to test humans’ WM capacity during visual memory tasks.


2018 ◽  
Author(s):  
Melissa Reneaux ◽  
Rahul Gupta

AbstractThe dopamine (DA) hypothesis of cognitive deficits suggests that too low or too high extracellular DA concentration in the prefrontal cortex (PFC) can severely impair the working memory (WM) maintenance during delay period. Thus, there exists only an optimal range of DA where the sustained-firing activity, the neural correlate of WM maintenance, in the cortex possesses optimal firing frequency as well as robustness against noisy distractions. Empirical evidences demonstrate changes even in the D1 receptor (D1R)-sensitivity to extracellular DA, collectively manifested through D1R density and DA-binding affinity, in the PFC under neuropsychiatric conditions such as ageing and schizophrenia. However, the impact of alterations in the cortical D1R-sensitivity on WM maintenance has yet remained poorly addressed. Using a quantitative neural mass model of the prefronto-mesoprefrontal system, the present study reveals that higher D1R-sensitivity may not only effectuate shrunk optimal DA range but also shift of the range to lower concentrations. Moreover, higher sensitivity may significantly reduce the WM-robustness even within the optimal DA range and exacerbates the decline at abnormal DA levels. These findings project important clinical implications, such as dosage precision and variability of DA-correcting drugs across patients, and failure in acquiring healthy WM maintenance even under drug-controlled normal cortical DA levels.


2017 ◽  
Author(s):  
P. Tewarie ◽  
A. Daffertshofer ◽  
B.W. van Dijk

1AbstractNeural mass models are accepted as efficient modelling techniques to model empirical observations such as disturbed oscillations or neuronal synchronization. Neural mass models are based on the mean-field assumption, i.e. they capture the mean-activity of a neuronal population. However, it is unclear if neural mass models still describe the mean activity of a neuronal population when the underlying neural network topology is not homogenous. Here, we test whether the mean activity of a neuronal population can be described by neural mass models when there is neuronal loss and when the connections in the network become sparse. To this end, we derive two neural mass models from a conductance based leaky integrate-and-firing (LIF) model. We then compared the power spectral densities of the mean activity of a network of inhibitory and excitatory LIF neurons with that of neural mass models by computing the Kolmogorov-Smirnov test statistic. Firstly, we found that when the number of neurons in a fully connected LIF-network is larger than 300, the neural mass model is a good description of the mean activity. Secondly, if the connection density in the LIF-network does not exceed a crtical value, this leads to desynchronization of neurons within the LIF-network and to failure of neural mass description. Therefore we conclude that neural mass models can be used for analysing empirical observations if the neuronal network of interest is large enough and when neurons in this system synchronize.


2018 ◽  
Author(s):  
Anatoly Buchin ◽  
Cliff C. Kerr ◽  
Gilles Huberfeld ◽  
Richard Miles ◽  
Boris Gutkin

AbstractPharmacoresistant epilepsy is a common neurological disorder in which increased neuronal intrinsic excitability and synaptic excitation lead to pathologically synchronous behavior in the brain. In the majority of experimental and theoretical epilepsy models, epilepsy is associated with reduced inhibition in the pathological neural circuits, yet effects of intrinsic excitability are usually not explicitly analyzed. Here we present a novel neural mass model that includes intrinsic excitability in the form of spike-frequency adaptation in the excitatory population. We validated our model using local field potential data recorded from human hippocampal/subicular slices. We found that synaptic conductances and slow adaptation in the excitatory population both play essential roles for generating seizures and pre-ictal oscillations. Using bifurcation analysis, we found that transitions towards seizure and back to the resting state take place via Andronov-Hopf bifurcations. These simulations therefore suggest that single neuron adaptation as well as synaptic inhibition are responsible for orchestrating seizure dynamics and transition towards the epileptic state.Significance statementEpileptic seizures are commonly thought to arise from a pathology of inhibition in the brain circuits. Theoretical models aiming to explain epileptic oscillations usually describe the neural activity solely in terms of inhibition and excitation. Single neuron adaptation properties are usually assumed to have only a limited contribution to seizure dynamics. To explore this issue, we developed a novel neural mass model with adaption in the excitatory population. By including adaptation and intrinsic excitability together with inhibition in this model, we were able to account for several experimentally observed properties of seizures, resting state dynamics, and pre-ictal oscillations, leading to improved understanding of epileptic seizures.


2021 ◽  
Author(s):  
Áine Byrne ◽  
James Ross ◽  
Rachel Nicks ◽  
Stephen Coombes

AbstractNeural mass models have been used since the 1970s to model the coarse-grained activity of large populations of neurons. They have proven especially fruitful for understanding brain rhythms. However, although motivated by neurobiological considerations they are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue. Here we consider a simple spiking neuron network model that has recently been shown to admit an exact mean-field description for both synaptic and gap-junction interactions. The mean-field model takes a similar form to a standard neural mass model, with an additional dynamical equation to describe the evolution of within-population synchrony. As well as reviewing the origins of this next generation mass model we discuss its extension to describe an idealised spatially extended planar cortex. To emphasise the usefulness of this model for EEG/MEG modelling we show how it can be used to uncover the role of local gap-junction coupling in shaping large scale synaptic waves.


2016 ◽  
Vol 26 (11) ◽  
pp. 113118 ◽  
Author(s):  
Yuzhen Cao ◽  
Liu Jin ◽  
Fei Su ◽  
Jiang Wang ◽  
Bin Deng

Sign in / Sign up

Export Citation Format

Share Document