cortical circuitry
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-3
Author(s):  
Federico Ranieri ◽  
Alberto Benussi ◽  
Mariagiovanna Cantone ◽  
Florinda Ferreri ◽  
Javier Márquez-Ruiz


Behaviour ◽  
2021 ◽  
pp. 1-52
Author(s):  
Lindsey Kitchenham ◽  
Georgia J. Mason

Abstract The neurobiology of environmentally induced stereotypic behaviours (SBs) (e.g., pacing in zoo carnivores, crib-biting in horses, tail chasing in dogs) is hypothesized to involve altered functioning within the basal ganglia (‘Basal Ganglia (BG) Pathways Hypotheses’) and/or between the basal ganglia and cortex (‘Cortico-Striatal-Thalamo-Cortical (CSTC) Circuits Hypotheses’). We review four decades of relevant studies, critically assessing support for both hypotheses. Currently no BG Pathways or CSTC Circuits hypothesis is fully supported. While some results are partially consistent with some hypotheses (decreased subthalamic nucleus activity in deer mice and C58 mice); others (nucleus accumbens activity in mink and C57 mice) seem to reflect individual differences in SB, but not environmental effects. Yet others can be tentatively rejected: neither elevated striatal dopamine nor the cortico-striatal connection of the sensorimotor circuit seem to be involved for most species studied to date. Further research is now important for understanding the impact of captivity on animals’ functioning.


2021 ◽  
Author(s):  
Sarwat Amina ◽  
Carmen Falcone ◽  
Tiffany Hong ◽  
Marisol Wendy Wolf-Ochoa ◽  
Gelareh Vakilzadeh ◽  
...  

Abstract An alteration in the balance of excitation-inhibition has been proposed as a common characteristic of the cerebral cortex in autism, which may be due to an alteration in the number and/or function of the excitatory and/or inhibitory cells that form the cortical circuitry. We previously found a decreased number of the parvalbumin (PV)+ interneuron known as Chandelier (Ch) cell in the prefrontal cortex in autism. This decrease could result from a decreased number of Ch cells, but also from decreased PV protein expression by Ch cells. To further determine if Ch cell number is altered in autism, we quantified the number of Ch cells following a different approach and different patient cohort than in our previous studies. We quantified the number of Ch cell cartridges—rather than Ch cell somata—that expressed GAT1—rather than PV. Specifically, we quantified GAT1+ cartridges in prefrontal areas BA9, BA46, and BA47 of 11 cases with autism and 11 control cases. We found that the density of GAT1+ cartridges was decreased in autism in all areas and layers. Whether this alteration is cause or effect remains unclear but could result from alterations that take place during cortical prenatal and/or postnatal development.


2021 ◽  
Author(s):  
Hugo A. Tejeda ◽  
Huikun Wang ◽  
Rodolfo J. Flores ◽  
Hector E. Yarur

Author(s):  
Azzurra Invernizzi ◽  
Koen V. Haak ◽  
Joana C. Carvalho ◽  
Remco J. Renken ◽  
Frans W. Cornelissen

AbstractThe majority of neurons in the human brain process signals from neurons elsewhere in the brain. Connective Field (CF) modeling is a biologically-grounded method to describe this essential aspect of the brain’s circuitry. It allows characterizing the response of a population of neurons in terms of the activity in another part of the brain. CF modeling translates the concept of the receptive field (RF) into the domain of connectivity by assessing the spatial dependency between signals in distinct cortical visual field areas. Standard CF model estimation has some intrinsic limitations in that it cannot estimate the uncertainty associated with each of its parameters. Obtaining the uncertainty will allow identification of model biases, e.g. related to an over- or under-fitting or a co-dependence of parameters, thereby improving the CF prediction. To enable this, here we present a Bayesian framework for the CF model. Using a Markov Chain Monte Carlo (MCMC) approach, we estimate the underlying posterior distribution of the CF parameters and consequently, quantify the uncertainty associated with each estimate. We applied the method and its new Bayesian features to characterize the cortical circuitry of the early human visual cortex of 12 healthy participants that were assessed using 3T fMRI. In addition, we show how the MCMC approach enables the use of effect size (beta) as a data-driven parameter to retain relevant voxels for further analysis. Finally, we demonstrate how our new method can be used to compare different CF models. Our results show that single Gaussian models are favoured over differences of Gaussians (i.e. center-surround) models, suggesting that the cortico-cortical connections of the early visual system do not possess center-surround organisation. We conclude that our new Bayesian CF framework provides a comprehensive tool to improve our fundamental understanding of the human cortical circuitry in health and disease.Highlights□ We present and validate a Bayesian CF framework based on a MCMC approach.□ The MCMC CF approach quantifies the model uncertainty associated with each CF parameter.□ We show how to use effect size beta as a data-driven threshold to retain relevant voxels.□ The cortical connective fields of the human early visual system are best described by a single, circular symmetric, Gaussian.


2020 ◽  
pp. 1-10
Author(s):  
Guanmao Chen ◽  
Pan Chen ◽  
JiaYing Gong ◽  
Yanbin Jia ◽  
Shuming Zhong ◽  
...  

Abstract Background Accumulating studies have found structural and functional abnormalities of the striatum in bipolar disorder (BD) and major depressive disorder (MDD). However, changes in intrinsic brain functional connectivity dynamics of striato-cortical circuitry have not been investigated in BD and MDD. This study aimed to investigate the shared and specific patterns of dynamic functional connectivity (dFC) variability of striato-cortical circuitry in BD and MDD. Methods Brain resting-state functional magnetic resonance imaging data were acquired from 128 patients with unmedicated BD II (current episode depressed), 140 patients with unmedicated MDD, and 132 healthy controls (HCs). Six pairs of striatum seed regions were selected: the ventral striatum inferior (VSi) and the ventral striatum superior (VSs), the dorsal-caudal putamen (DCP), the dorsal-rostral putamen (DRP), and the dorsal caudate and the ventral-rostral putamen (VRP). The sliding-window analysis was used to evaluate dFC for each seed. Results Both BD II and MDD exhibited increased dFC variability between the left DRP and the left supplementary motor area, and between the right VRP and the right inferior parietal lobule. The BD II had specific increased dFC variability between the right DCP and the left precentral gyrus compared with MDD and HCs. The MDD had increased dFC variability between the left VSi and the left medial prefrontal cortex compared with BD II and HCs. Conclusions The patients with BD and MDD shared common dFC alteration in the dorsal striatal-sensorimotor and ventral striatal-cognitive circuitries. The patients with MDD had specific dFC alteration in the ventral striatal-affective circuitry.


2020 ◽  
Vol 30 (11) ◽  
pp. 5654-5666 ◽  
Author(s):  
Jasmine P Hendy ◽  
Emi Takahashi ◽  
Andre J van der Kouwe ◽  
Christine J Charvet

Abstract The human frontal cortex is unusually large compared with many other species. The expansion of the human frontal cortex is accompanied by both connectivity and transcriptional changes. Yet, the developmental origins generating variation in frontal cortex circuitry across species remain unresolved. Nineteen genes that encode filaments, synapse, and voltage-gated channels are especially enriched in the supragranular layers of the human cerebral cortex, which suggests enhanced corticocortical projections emerging from layer III. We identify species differences in connections with the use of diffusion MR tractography as well as gene expression in adulthood and in development to identify developmental mechanisms generating variation in frontal cortical circuitry. We demonstrate that increased expression of supragranular-enriched genes in frontal cortex layer III is concomitant with an expansion in corticocortical pathways projecting within the frontal cortex in humans relative to mice. We also demonstrate that the growth of the frontal cortex white matter and transcriptional profiles of supragranular-enriched genes are protracted in humans relative to mice. The expansion of projections emerging from the human frontal cortex arises by extending frontal cortical circuitry development. Integrating gene expression with neuroimaging level phenotypes is an effective strategy to assess deviations in developmental programs leading to species differences in connections.


2020 ◽  
Vol 123 (2) ◽  
pp. 815-830 ◽  
Author(s):  
Gaurav R. Isola ◽  
Anca Vochin ◽  
Jon T. Sakata

The interplay between inhibition and excitation can regulate behavioral expression and control, including the expression of communicative behaviors like birdsong. Computational models postulate varying degrees to which inhibition within vocal motor circuitry influences birdsong, but few studies have tested these models by manipulating inhibition. Here we enhanced and attenuated inhibition in the cortical nucleus HVC (used as proper name) of Bengalese finches ( Lonchura striata var. domestica). Enhancement of inhibition (with muscimol) in HVC dose-dependently reduced the amount of song produced. Infusions of higher concentrations of muscimol caused some birds to produce spectrally degraded songs, whereas infusions of lower doses of muscimol led to the production of relatively normal (nondegraded) songs. However, the spectral and temporal structures of these nondegraded songs were significantly different from songs produced under control conditions. In particular, muscimol infusions decreased the frequency and amplitude of syllables, increased various measures of acoustic entropy, and increased the variability of syllable structure. Muscimol also increased sequence durations and the variability of syllable timing and syllable sequencing. Attenuation of inhibition (with bicuculline) in HVC led to changes to song distinct from and often opposite to enhancing inhibition. For example, in contrast to muscimol, bicuculline infusions increased syllable amplitude, frequency, and duration and decreased the variability of acoustic features. However, like muscimol, bicuculline increased the variability of syllable sequencing. These data highlight the importance of inhibition to the production of stereotyped vocalizations and demonstrate that changes to neural dynamics within cortical circuitry can differentially affect spectral and temporal features of song. NEW & NOTEWORTHY We reveal that manipulations of inhibition in the cortical nucleus HVC affect the structure, timing, and sequencing of syllables in Bengalese finch song. Enhancing and blocking inhibition led to opposite changes to the acoustic structure and timing of vocalizations, but both caused similar changes to vocal sequencing. These data provide support for computational models of song control but also motivate refinement of existing models to account for differential effects on syllable structure, timing, and sequencing.


Sign in / Sign up

Export Citation Format

Share Document