scholarly journals Methodology for rigorous modeling of protein conformational changes by Rosetta using DEER Distance Restraints

2021 ◽  
Vol 17 (6) ◽  
pp. e1009107
Author(s):  
Diego del Alamo ◽  
Kevin L. Jagessar ◽  
Jens Meiler ◽  
Hassane S. Mchaourab

We describe an approach for integrating distance restraints from Double Electron-Electron Resonance (DEER) spectroscopy into Rosetta with the purpose of modeling alternative protein conformations from an initial experimental structure. Fundamental to this approach is a multilateration algorithm that harnesses sets of interconnected spin label pairs to identify optimal rotamer ensembles at each residue that fit the DEER decay in the time domain. Benchmarked relative to data analysis packages, the algorithm yields comparable distance distributions with the advantage that fitting the DEER decay and rotamer ensemble optimization are coupled. We demonstrate this approach by modeling the protonation-dependent transition of the multidrug transporter PfMATE to an inward facing conformation with a deviation to the experimental structure of less than 2Å Cα RMSD. By decreasing spin label rotamer entropy, this approach engenders more accurate Rosetta models that are also more closely clustered, thus setting the stage for more robust modeling of protein conformational changes.

2020 ◽  
Vol 48 (9) ◽  
pp. e49-e49 ◽  
Author(s):  
Shreya Ghosh ◽  
Matthew J Lawless ◽  
Hanna J Brubaker ◽  
Kevin Singewald ◽  
Michael R Kurpiewski ◽  
...  

Abstract Electron paramagnetic resonance (EPR) has become an important tool to probe conformational changes in nucleic acids. An array of EPR labels for nucleic acids are available, but they often come at the cost of long tethers, are dependent on the presence of a particular nucleotide or can be placed only at the termini. Site directed incorporation of Cu2+-chelated to a ligand, 2,2′dipicolylamine (DPA) is potentially an attractive strategy for site-specific, nucleotide independent Cu2+-labelling in DNA. To fully understand the potential of this label, we undertook a systematic and detailed analysis of the Cu2+-DPA motif using EPR and molecular dynamics (MD) simulations. We used continuous wave EPR experiments to characterize Cu2+ binding to DPA as well as optimize Cu2+ loading conditions. We performed double electron-electron resonance (DEER) experiments at two frequencies to elucidate orientational selectivity effects. Furthermore, comparison of DEER and MD simulated distance distributions reveal a remarkable agreement in the most probable distances. The results illustrate the efficacy of the Cu2+-DPA in reporting on DNA backbone conformations for sufficiently long base pair separations. This labelling strategy can serve as an important tool for probing conformational changes in DNA upon interaction with other macromolecules.


2008 ◽  
Vol 47 (4) ◽  
pp. 735-737 ◽  
Author(s):  
Giuseppe Sicoli ◽  
Gérald Mathis ◽  
Olivier Delalande ◽  
Yves Boulard ◽  
Didier Gasparutto ◽  
...  

2020 ◽  
Vol 1 (2) ◽  
pp. 285-299
Author(s):  
Markus Teucher ◽  
Mian Qi ◽  
Ninive Cati ◽  
Henrik Hintz ◽  
Adelheid Godt ◽  
...  

Abstract. Double electron–electron resonance (DEER) spectroscopy applied to orthogonally spin-labeled biomolecular complexes simplifies the assignment of intra- and intermolecular distances, thereby increasing the information content per sample. In fact, various spin labels can be addressed independently in DEER experiments due to spectroscopically nonoverlapping central transitions, distinct relaxation times, and/or transition moments; hence, they are referred to as spectroscopically orthogonal. Molecular complexes which are, for example, orthogonally spin-labeled with nitroxide (NO) and gadolinium (Gd) labels give access to three distinct DEER channels that are optimized to selectively probe NO–NO, NO–Gd, and Gd–Gd distances. Nevertheless, it has been previously recognized that crosstalk signals between individual DEER channels can occur, for example, when a Gd–Gd distance appears in a DEER channel optimized to detect NO–Gd distances. This is caused by residual spectral overlap between NO and Gd spins which, therefore, cannot be considered as perfectly orthogonal. Here, we present a systematic study on how to identify and suppress crosstalk signals that can appear in DEER experiments using mixtures of NO–NO, NO–Gd, and Gd–Gd molecular rulers characterized by distinct, nonoverlapping distance distributions. This study will help to correctly assign the distance peaks in homo- and heterocomplexes of biomolecules carrying not perfectly orthogonal spin labels.


2019 ◽  
Vol 58 (5) ◽  
pp. 3015-3025 ◽  
Author(s):  
Anokhi Shah ◽  
Amandine Roux ◽  
Matthieu Starck ◽  
Jackie A. Mosely ◽  
Michael Stevens ◽  
...  

2018 ◽  
Vol 2 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Gunnar Jeschke

Electron paramagnetic resonance (EPR) spectroscopy combined with site-directed spin labelling is applicable to biomolecules and their complexes irrespective of system size and in a broad range of environments. Neither short-range nor long-range order is required to obtain structural restraints on accessibility of sites to water or oxygen, on secondary structure, and on distances between sites. Many of the experiments characterize a static ensemble obtained by shock-freezing. Compared with characterizing the dynamic ensemble at ambient temperature, analysis is simplified and information loss due to overlapping timescales of measurement and system dynamics is avoided. The necessity for labelling leads to sparse restraint sets that require integration with data from other methodologies for building models. The double electron–electron resonance experiment provides distance distributions in the nanometre range that carry information not only on the mean conformation but also on the width of the native ensemble. The distribution widths are often inconsistent with Anfinsen's concept that a sequence encodes a single native conformation defined at atomic resolution under physiological conditions.


2008 ◽  
Vol 120 (4) ◽  
pp. 747-749 ◽  
Author(s):  
Giuseppe Sicoli ◽  
Gérald Mathis ◽  
Olivier Delalande ◽  
Yves Boulard ◽  
Didier Gasparutto ◽  
...  

Biochemistry ◽  
2013 ◽  
Vol 52 (34) ◽  
pp. 5800-5808 ◽  
Author(s):  
William K. Myers ◽  
Xianzhong Xu ◽  
Congmin Li ◽  
Jens O. Lagerstedt ◽  
Madhu S. Budamagunta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document