protein conformational changes
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 35)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Scott G. Harroun ◽  
Dominic Lauzon ◽  
Maximilian C. C. J. C. Ebert ◽  
Arnaud Desrosiers ◽  
Xiaomeng Wang ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2401
Author(s):  
Alistair Turcan ◽  
Anna Zivkovic ◽  
Dylan Thompson ◽  
Lorraine Wong ◽  
Lauren Johnson ◽  
...  

Elucidating protein rigidity offers insights about protein conformational changes. An understanding of protein motion can help speed drug development, and provide general insights into the dynamic behaviors of biomolecules. Existing rigidity analysis techniques employ fine-grained, all-atom modeling, which has a costly run-time, particularly for proteins made up of more than 500 residues. In this work, we introduce coarse-grained rigidity analysis, and showcase that it provides flexibility information about a protein that is similar in accuracy to an all-atom modeling approach. We assess the accuracy of the coarse-grained method relative to an all-atom approach via a comparison metric that reasons about the largest rigid clusters of the two methods. The apparent symmetry between the all-atom and coarse-grained methods yields very similar results, but the coarse-grained method routinely exhibits 40% reduced run-times. The CGRAP web server outputs rigid cluster information, and provides data visualization capabilities, including a interactive protein visualizer.


2021 ◽  
Vol 118 (46) ◽  
pp. e2113229118
Author(s):  
Radda Rusinova ◽  
Changhao He ◽  
Olaf S. Andersen

The hydrophobic coupling between membrane proteins and their host lipid bilayer provides a mechanism by which bilayer-modifying drugs may alter protein function. Drug regulation of membrane protein function thus may be mediated by both direct interactions with the protein and drug-induced alterations of bilayer properties, in which the latter will alter the energetics of protein conformational changes. To tease apart these mechanisms, we examine how the prototypical, proton-gated bacterial potassium channel KcsA is regulated by bilayer-modifying drugs using a fluorescence-based approach to quantify changes in both KcsA function and lipid bilayer properties (using gramicidin channels as probes). All tested drugs inhibited KcsA activity, and the changes in the different gating steps varied with bilayer thickness, suggesting a coupling to the bilayer. Examining the correlations between changes in KcsA gating steps and bilayer properties reveals that drug-induced regulation of membrane protein function indeed involves bilayer-mediated mechanisms. Both direct, either specific or nonspecific, binding and bilayer-mediated mechanisms therefore are likely to be important whenever there is overlap between the concentration ranges at which a drug alters membrane protein function and bilayer properties. Because changes in bilayer properties will impact many diverse membrane proteins, they may cause indiscriminate changes in protein function.


2021 ◽  
Vol 22 (19) ◽  
pp. 10501
Author(s):  
Domenico Scaramozzino ◽  
Gianfranco Piana ◽  
Giuseppe Lacidogna ◽  
Alberto Carpinteri

Protein dynamics has been investigated since almost half a century, as it is believed to constitute the fundamental connection between structure and function. Elastic network models (ENMs) have been widely used to predict protein dynamics, flexibility and the biological mechanism, from which remarkable results have been found regarding the prediction of protein conformational changes. Starting from the knowledge of the reference structure only, these conformational changes have been usually predicted either by looking at the individual mode shapes of vibrations (i.e., by considering the free vibrations of the ENM) or by applying static perturbations to the protein network (i.e., by considering a linear response theory). In this paper, we put together the two previous approaches and evaluate the complete protein response under the application of dynamic perturbations. Harmonic forces with random directions are applied to the protein ENM, which are meant to simulate the single frequency-dependent components of the collisions of the surrounding particles, and the protein response is computed by solving the dynamic equations in the underdamped regime, where mass, viscous damping and elastic stiffness contributions are explicitly taken into account. The obtained motion is investigated both in the coordinate space and in the sub-space of principal components (PCs). The results show that the application of perturbations in the low-frequency range is able to drive the protein conformational change, leading to remarkably high values of direction similarity. Eventually, this suggests that protein conformational change might be triggered by external collisions and favored by the inherent low-frequency dynamics of the protein structure.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009107
Author(s):  
Diego del Alamo ◽  
Kevin L. Jagessar ◽  
Jens Meiler ◽  
Hassane S. Mchaourab

We describe an approach for integrating distance restraints from Double Electron-Electron Resonance (DEER) spectroscopy into Rosetta with the purpose of modeling alternative protein conformations from an initial experimental structure. Fundamental to this approach is a multilateration algorithm that harnesses sets of interconnected spin label pairs to identify optimal rotamer ensembles at each residue that fit the DEER decay in the time domain. Benchmarked relative to data analysis packages, the algorithm yields comparable distance distributions with the advantage that fitting the DEER decay and rotamer ensemble optimization are coupled. We demonstrate this approach by modeling the protonation-dependent transition of the multidrug transporter PfMATE to an inward facing conformation with a deviation to the experimental structure of less than 2Å Cα RMSD. By decreasing spin label rotamer entropy, this approach engenders more accurate Rosetta models that are also more closely clustered, thus setting the stage for more robust modeling of protein conformational changes.


Author(s):  
Yitong Bai ◽  
Xian Wu ◽  
Peng Ouyang ◽  
Mengyao Shi ◽  
Qun Li ◽  
...  

Hydrophilic surface modification enhanced the interaction between fullerene and lysozyme to induce more protein conformational changes and enzyme activity loss.


Sign in / Sign up

Export Citation Format

Share Document