scholarly journals Histone H3 Variant Regulates RNA Polymerase II Transcription Termination and Dual Strand Transcription of siRNA Loci in Trypanosoma brucei

PLoS Genetics ◽  
2016 ◽  
Vol 12 (1) ◽  
pp. e1005758 ◽  
Author(s):  
David Reynolds ◽  
Brigitte T. Hofmeister ◽  
Laura Cliffe ◽  
Magdy Alabady ◽  
T. Nicolai Siegel ◽  
...  
2021 ◽  
Author(s):  
Hayato Hirai ◽  
Yuki Shogaki ◽  
Masamitsu Sato

Centromeres are established by nucleosomes containing the histone H3 variant CENP-A. CENP-A is recruited to centromeres by the Mis18-HJURP machinery. During mitosis, CENP-A recruitment ceases, implying the necessity of CENP-A maintenance at centromeres, although the exact underlying mechanism remains elusive. Herein, we show that the kinetochore protein Mis6 (CENP-I) retains CENP-A during mitosis in fission yeast. Eliminating Mis6 during mitosis caused immediate loss of pre-existing CENP-A at centromeres. CENP-A loss occurred due to the transcriptional upregulation of non-coding RNAs at the central core region of centromeres, as confirmed by the observation RNA polymerase II inhibition preventing CENP-A loss from centromeres in the mis6 mutant. Thus, we concluded that Mis6 blocks the indiscriminate transcription of non-coding RNAs at the core centromere, thereby retaining the epigenetic inheritance of CENP-A during mitosis.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. e1008390 ◽  
Author(s):  
Rudo Kieft ◽  
Yang Zhang ◽  
Alexandre P. Marand ◽  
Jose Dagoberto Moran ◽  
Robert Bridger ◽  
...  

2020 ◽  
Vol 3 (10) ◽  
pp. e202000762
Author(s):  
Oscar D Villarreal ◽  
Sofiane Y Mersaoui ◽  
Zhenbao Yu ◽  
Jean-Yves Masson ◽  
Stéphane Richard

DDX5, XRN2, and PRMT5 have been shown to resolve DNA/RNA hybrids (R-loops) at RNA polymerase II transcription termination sites at few genomic loci. Herein, we perform genome-wide R-loop mapping using classical DNA/RNA immunoprecipitation and high-throughput sequencing (DRIP-seq) of loci regulated by DDX5, XRN2, and PRMT5. We observed hundreds to thousands of R-loop gains and losses at transcribed loci in DDX5-, XRN2-, and PRMT5-deficient U2OS cells. R-loop gains were characteristic of highly transcribed genes located at gene-rich regions, whereas R-loop losses were observed in low-density gene areas. DDX5, XRN2, and PRMT5 shared many R-loop gain loci at transcription termination sites, consistent with their coordinated role in RNA polymerase II transcription termination. DDX5-depleted cells had unique R-loop gain peaks near the transcription start site that did not overlap with those of siXRN2 and siPRMT5 cells, suggesting a role for DDX5 in transcription initiation independent of XRN2 and PRMT5. Moreover, we observed that the accumulated R-loops at certain loci in siDDX5, siXRN2, and siPRMT5 cells near the transcription start site of genes led to antisense intergenic transcription. Our findings define unique and shared roles of DDX5, XRN2, and PRMT5 in DNA/RNA hybrid regulation.


Sign in / Sign up

Export Citation Format

Share Document