scholarly journals Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation

PLoS Genetics ◽  
2020 ◽  
Vol 16 (10) ◽  
pp. e1009022
Author(s):  
Brendan Evano ◽  
Diljeet Gill ◽  
Irene Hernando-Herraez ◽  
Glenda Comai ◽  
Thomas M. Stubbs ◽  
...  

Adult skeletal muscles are maintained during homeostasis and regenerated upon injury by muscle stem cells (MuSCs). A heterogeneity in self-renewal, differentiation and regeneration properties has been reported for MuSCs based on their anatomical location. Although MuSCs derived from extraocular muscles (EOM) have a higher regenerative capacity than those derived from limb muscles, the molecular determinants that govern these differences remain undefined. Here we show that EOM and limb MuSCs have distinct DNA methylation signatures associated with enhancers of location-specific genes, and that the EOM transcriptome is reprogrammed following transplantation into a limb muscle environment. Notably, EOM MuSCs expressed host-site specific positional Hox codes after engraftment and self-renewal within the host muscle. However, about 10% of EOM-specific genes showed engraftment-resistant expression, pointing to cell-intrinsic molecular determinants of the higher engraftment potential of EOM MuSCs. Our results underscore the molecular diversity of distinct MuSC populations and molecularly define their plasticity in response to microenvironmental cues. These findings provide insights into strategies designed to improve the functional capacity of MuSCs in the context of regenerative medicine.

2020 ◽  
Author(s):  
Brendan Evano ◽  
Diljeet Gill ◽  
Irene Hernando-Herraez ◽  
Glenda Comai ◽  
Thomas M. Stubbs ◽  
...  

ABSTRACTAdult skeletal muscles are maintained during homeostasis and regenerated upon injury by muscle stem cells (MuSCs). A heterogeneity in self-renewal, differentiation and regeneration properties has been reported for MuSCs based on their anatomical location. Although MuSCs derived from extraocular muscles (EOM) have a higher regenerative capacity than those derived from limb muscles, the molecular determinants that govern these differences remain undefined. Here we show that EOM and limb MuSCs have distinct DNA methylation signatures associated with enhancers of location-specific genes, and that the EOM transcriptome is reprogrammed following transplantation into a limb muscle environment. Notably, EOM MuSCs expressed host-site specific positional Hox codes after engraftment and self-renewal within the host muscle. However, about 10% of EOM-specific genes showed engraftment-resistant expression, pointing to cell-intrinsic molecular determinants of the higher engraftment potential of EOM MuSCs. Our results underscore the molecular diversity of distinct MuSC populations and molecularly define their plasticity in response to microenvironmental cues. These findings provide insights into strategies designed to improve the functional capacity of MuSCs in the context of regenerative medicine.


2019 ◽  
Vol 75 (11) ◽  
pp. 6349-2019 ◽  
Author(s):  
ANNA CIECIERSKA ◽  
TOMASZ SADKOWSKI ◽  
TOMASZ MOTYL

Postnatal growth and regeneration capacity of skeletal muscles is dependent mainly on adult muscle stem cells called satellite cells. Satellite cells are quiescent mononucleated cells that are normally located outside the sarcolemma within the basal lamina of the muscle fiber. Their activation, which results from injury, is manifested by mobilization, proliferation, differentiation and, ultimately, fusion into new muscle fibers. The satellite cell pool is responsible for the remarkable regenerative capacity of skeletal muscles. Moreover, these cells are capable of self-renewal and can give rise to myogenic progeny.


2012 ◽  
Vol 2 (1) ◽  
pp. 11-21
Author(s):  
Silvia Cristini ◽  
Giulio Alessandri ◽  
Francesco Acerbi ◽  
Daniela Tavian ◽  
Eugenio A. Parati ◽  
...  

2012 ◽  
Vol 2 (1) ◽  
pp. 11-21
Author(s):  
Silvia Cristini ◽  
Giulio Alessandri ◽  
Francesco Acerbi ◽  
Daniela Tavian ◽  
Eugenio A. Parati ◽  
...  

2021 ◽  
pp. 112933
Author(s):  
Ines Lahmann ◽  
Yao Zhang ◽  
Katharina Baum ◽  
Jana Wolf ◽  
Carmen Birchmeier

2014 ◽  
Vol 2 (4) ◽  
pp. 414-426 ◽  
Author(s):  
Suchitra D. Gopinath ◽  
Ashley E. Webb ◽  
Anne Brunet ◽  
Thomas A. Rando

PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63528 ◽  
Author(s):  
Wendy Cousin ◽  
Michelle Liane Ho ◽  
Rajiv Desai ◽  
Andrea Tham ◽  
Robert Yuzen Chen ◽  
...  

2018 ◽  
Vol 315 (2) ◽  
pp. C247-C257 ◽  
Author(s):  
Andrea A. Domenighetti ◽  
Margie A. Mathewson ◽  
Rajeswari Pichika ◽  
Lydia A. Sibley ◽  
Leyna Zhao ◽  
...  

Cerebral palsy (CP) is the most common cause of pediatric neurodevelopmental and physical disability in the United States. It is defined as a group of motor disorders caused by a nonprogressive perinatal insult to the brain. Although the brain lesion is nonprogressive, there is a progressive, lifelong impact on skeletal muscles, which are shorter, spastic, and may develop debilitating contractures. Satellite cells are resident muscle stem cells that are indispensable for postnatal growth and regeneration of skeletal muscles. Here we measured the myogenic potential of satellite cells isolated from contractured muscles in children with CP. When compared with typically developing (TD) children, satellite cell-derived myoblasts from CP differentiated more slowly (slope: 0.013 (SD 0.013) CP vs. 0.091 (SD 0.024) TD over 24 h, P < 0.001) and fused less (fusion index: 21.3 (SD 8.6) CP vs. 81.3 (SD 7.7) TD after 48 h, P < 0.001) after exposure to low-serum conditions that stimulated myotube formation. This impairment was associated with downregulation of several markers important for myoblast fusion and myotube formation, including DNA methylation-dependent inhibition of promyogenic integrin-β 1D (ITGB1D) protein expression levels (−50% at 42 h), and ~25% loss of integrin-mediated focal adhesion kinase phosphorylation. The cytidine analog 5-Azacytidine (5-AZA), a demethylating agent, restored ITGB1D levels and promoted myogenesis in CP cultures. Our data demonstrate that muscle contractures in CP are associated with loss of satellite cell myogenic potential that is dependent on DNA methylation patterns affecting expression of genetic programs associated with muscle stem cell differentiation and muscle fiber formation.


Sign in / Sign up

Export Citation Format

Share Document