scholarly journals Sulfate Activation in Mitosomes Plays an Important Role in the Proliferation of Entamoeba histolytica

2011 ◽  
Vol 5 (8) ◽  
pp. e1263 ◽  
Author(s):  
Fumika Mi-ichi ◽  
Takashi Makiuchi ◽  
Atsushi Furukawa ◽  
Dan Sato ◽  
Tomoyoshi Nozaki
2020 ◽  
Vol 8 (8) ◽  
pp. 1229
Author(s):  
Herbert J. Santos ◽  
Yoko Chiba ◽  
Takashi Makiuchi ◽  
Saki Arakawa ◽  
Yoshitaka Murakami ◽  
...  

Mitochondrial matrix proteins synthesized in the cytosol often contain amino (N)-terminal targeting sequences (NTSs), or alternately internal targeting sequences (ITSs), which enable them to be properly translocated to the organelle. Such sequences are also required for proteins targeted to mitochondrion-related organelles (MROs) that are present in a few species of anaerobic eukaryotes. Similar to other MROs, the mitosomes of the human intestinal parasite Entamoeba histolytica are highly degenerate, because a majority of the components involved in various processes occurring in the canonical mitochondria are either missing or modified. As of yet, sulfate activation continues to be the only identified role of the relic mitochondria of Entamoeba. Mitosomes influence the parasitic nature of E. histolytica, as the downstream cytosolic products of sulfate activation have been reported to be essential in proliferation and encystation. Here, we investigated the position of the targeting sequence of one of the mitosomal matrix enzymes involved in the sulfate activation pathway, ATP sulfurylase (AS). We confirmed by immunofluorescence assay and subcellular fractionation that hemagluttinin (HA)-tagged EhAS was targeted to mitosomes. However, its ortholog in the δ-proteobacterium Desulfovibrio vulgaris, expressed as DvAS-HA in amoebic trophozoites, indicated cytosolic localization, suggesting a lack of recognizable mitosome targeting sequence in this protein. By expressing chimeric proteins containing swapped sequences between EhAS and DvAS in amoebic cells, we identified the ITSs responsible for mitosome targeting of EhAS. This observation is similar to other parasitic protozoans that harbor MROs, suggesting a convergent feature among various MROs in favoring ITS for the recognition and translocation of targeted proteins.


2015 ◽  
Vol 14 (11) ◽  
pp. 1144-1150 ◽  
Author(s):  
Fumika Mi-ichi ◽  
Akira Nozawa ◽  
Hiroki Yoshida ◽  
Yuzuru Tozawa ◽  
Tomoyoshi Nozaki

ABSTRACT Entamoeba histolytica , a microaerophilic protozoan parasite, possesses mitosomes. Mitosomes are mitochondrion-related organelles that have largely lost typical mitochondrial functions, such as those involved in the tricarboxylic acid cycle and oxidative phosphorylation. The biological roles of Entamoeba mitosomes have been a long-standing enigma. We previously demonstrated that sulfate activation, which is not generally compartmentalized to mitochondria, is a major function of E. histolytica mitosomes. Sulfate activation cooperates with cytosolic enzymes, i.e., sulfotransferases (SULTs), for the synthesis of sulfolipids, one of which is cholesteryl sulfate. Notably, cholesteryl sulfate plays an important role in encystation, an essential process in the Entamoeba life cycle. These findings identified a biological role for Entamoeba mitosomes; however, they simultaneously raised a new issue concerning how the reactions of the pathway, separated by the mitosomal membranes, cooperate. Here, we demonstrated that the E. histolytica mitochondrial carrier family (EhMCF) has the capacity to exchange 3′-phosphoadenosine 5′-phosphosulfate (PAPS) with ATP. We also confirmed the cytosolic localization of all the E. histolytica SULTs, suggesting that in Entamoeba , PAPS, which is produced through mitosomal sulfate activation, is translocated to the cytosol and becomes a substrate for SULTs. In contrast, ATP, which is produced through cytosolic pathways, is translocated into the mitosomes and is a necessary substrate for sulfate activation. Taking our findings collectively, we suggest that EhMCF functions as a PAPS/ATP antiporter and plays a crucial role in linking the mitosomal sulfate activation pathway to cytosolic SULTs for the production of sulfolipids.


2009 ◽  
Vol 106 (51) ◽  
pp. 21731-21736 ◽  
Author(s):  
F. Mi-ichi ◽  
M. A. Yousuf ◽  
K. Nakada-Tsukui ◽  
T. Nozaki

Author(s):  
Norberto Treviño ◽  
Alfredo Feria-Velasco ◽  
I. Ruiz de Chávez

Although erythrophagocytosis by various species of Entamoeba is a well known phenomenon this has not yet been studied in detail at the ultrastructural level. The present work deals with the description of the incorporation process of erythrocytes by trophozoites of E. histolytica. For this study, trophozoites of E. histolytica, HK-9:NIH strain cultured in axenic conditions and washed human erythrocytes were placed on a hot plate at 37°C in physiological saline solution. After 5 minutes, 2.5% glutarldehyde was added and the samples were processed according to conventional techniques for electron microscopy.Based upon light microscopy studies on living trophozoites in contact with erythrocytes, it seems that erythrophagocytosis only takes place in one pole of the parasite.


Author(s):  
Victor Tsutsumi ◽  
Adolfo Martinez-Palomo ◽  
Kyuichi Tanikawa

The protozoan parasite Entamoeba histolytica is the causative agent of amebiasis in man. The trophozoite or motile form is a highly dynamic and pleomorphic cell with a great capacity to destroy tissues. Moreover, the parasite has the singular ability to phagocytize a variety of different live or death cells. Phagocytosis of red blood cells by E. histolytica trophozoites is a complex phenomenon related with amebic pathogenicity and nutrition.


Sign in / Sign up

Export Citation Format

Share Document