scholarly journals Cryptococcus neoformans Is Resistant to Surfactant Protein A Mediated Host Defense Mechanisms

PLoS ONE ◽  
2007 ◽  
Vol 2 (12) ◽  
pp. e1370 ◽  
Author(s):  
Steven S. Giles ◽  
Aimee K. Zaas ◽  
Mike F. Reidy ◽  
John R. Perfect ◽  
Jo Rae Wright
2009 ◽  
Vol 77 (7) ◽  
pp. 2783-2794 ◽  
Author(s):  
Scarlett Geunes-Boyer ◽  
Timothy N. Oliver ◽  
Guilhem Janbon ◽  
Jennifer K. Lodge ◽  
Joseph Heitman ◽  
...  

ABSTRACT Cryptococcus neoformans is a facultative intracellular opportunistic pathogen and the leading cause of fungal meningitis in humans. In the absence of a protective cellular immune response, the inhalation of C. neoformans cells or spores results in pulmonary infection. C. neoformans cells produce a polysaccharide capsule composed predominantly of glucuronoxylomannan, which constitutes approximately 90% of the capsular material. In the lungs, surfactant protein A (SP-A) and SP-D contribute to immune defense by facilitating the aggregation, uptake, and killing of many microorganisms by phagocytic cells. We hypothesized that SP-D plays a role in C. neoformans pathogenesis by binding to and enhancing the phagocytosis of the yeast. Here, the abilities of SP-D to bind to and facilitate the phagocytosis and survival of the wild-type encapsulated strain H99 and the cap59Δ mutant hypocapsular strain are assessed. SP-D binding to cap59Δ mutant cells was approximately sixfold greater than binding to wild-type cells. SP-D enhanced the phagocytosis of cap59Δ cells by approximately fourfold in vitro. To investigate SP-D binding in vivo, SP-D−/− mice were intranasally inoculated with Alexa Fluor 488-labeled cap59Δ or H99 cells. By confocal microscopy, a greater number of phagocytosed C. neoformans cells in wild-type mice than in SP-D−/− mice was observed, consistent with in vitro data. Interestingly, SP-D protected C. neoformans cells against macrophage-mediated defense mechanisms in vitro, as demonstrated by an analysis of fungal viability using a CFU assay. These findings provide evidence that C. neoformans subverts host defense mechanisms involving surfactant, establishing a novel virulence paradigm that may be targeted for therapy.


2022 ◽  
Vol 9 ◽  
Author(s):  
Lynnlee Depicolzuane ◽  
David S. Phelps ◽  
Joanna Floros

Pulmonary surfactant proteins have many roles in surfactant- related functions and innate immunity. One of these proteins is the surfactant protein A (SP-A) that plays a role in both surfactant-related processes and host defense and is the focus in this review. SP-A interacts with the sentinel host defense cell in the alveolus, the alveolar macrophage (AM), to modulate its function and expression profile under various conditions, as well as other alveolar epithelial cells such as the Type II cell. Via these interactions, SP-A has an impact on the alveolar microenvironment. SP-A is also important for surfactant structure and function. Much of what is understood of the function of SP-A and its various roles in lung health has been learned from SP-A knockout (KO) mouse experiments, as reviewed here. A vast majority of this work has been done with infection models that are bacterial, viral, and fungal in nature. Other models have also been used, including those of bleomycin-induced lung injury and ozone-induced oxidative stress either alone or in combination with an infectious agent, bone marrow transplantation, and other. In addition, models investigating the effects of SP-A on surfactant components or surfactant structure have contributed important information. SP-A also appears to play a role in pathways involved in sex differences in response to infection and/or oxidative stress, as well as at baseline conditions. To date, this is the first review to provide a comprehensive report of the functions of SP-A as learned through KO mice.


2021 ◽  
Author(s):  
Katja Freundt ◽  
Christian Herzmann ◽  
Dominika Biedziak ◽  
Claudia Scheffzük ◽  
Karoline I. Gaede ◽  
...  

Respiratory infections by Gram-negative bacteria are a major cause of global morbidity and mortality. Alveolar macrophages (AMs) play a central role in maintaining lung immune homeostasis and host defense by sensing pathogens via pattern recognition receptors (PRR). The PRR Toll-like receptor (TLR) 4 is a key sensor of lipopolysaccharide (LPS) from Gram-negative bacteria. Pulmonary surfactant is the natural microenvironment of AMs. Surfactant protein A (SP-A), a multifunctional host defense collectin, controls LPS-induced pro-inflammatory immune responses at the organismal and cellular level via distinct mechanisms. We found that SP-A post-transcriptionally restricts LPS-induced TLR4 protein expression in primary AMs from healthy humans, rats, wild-type and SP-A -/- mice by further decreasing cycloheximide-reduced TLR4 protein translation and enhances the co-localization of TLR4 with the late endosome/lysosome. Both effects as well as the SP-A-mediated inhibition of LPS-induced TNFα release are counteracted by pharmacological inhibition of the small GTPase Rab7. SP-A-enhanced Rab7 expression requires β-arrestin2 and, in β-arrestin2 -/- AMs and after intratracheal LPS challenge of β-arrestin2 -/- mice, SP-A fails to enhance TLR4/lysosome co-localization and degradation of LPS-induced TLR4. In SP-A -/- mice, TLR4 levels are increased after pulmonary LPS challenge. SP-A-induced activation of mechanistic target of rapamycin complex 1 (mTORC1) kinase requires β-arrestin2 and is critically involved in degradation of LPS-induced TLR4. The data suggest that SP-A post-translationally limits LPS-induced TLR4 expression in primary AMs by lysosomal degradation comprising Rab7, β-arrestin2, and mTORC1. This study may indicate a potential role of SP-A-based therapeutic interventions in unrestricted TLR4-driven immune responses to lower respiratory tract infections caused by Gram-negative bacteria.


Sign in / Sign up

Export Citation Format

Share Document