scholarly journals Genetically-Directed, Cell Type-Specific Sparse Labeling for the Analysis of Neuronal Morphology

PLoS ONE ◽  
2008 ◽  
Vol 3 (12) ◽  
pp. e4099 ◽  
Author(s):  
Thomas Rotolo ◽  
Philip M. Smallwood ◽  
John Williams ◽  
Jeremy Nathans
2021 ◽  
Author(s):  
Firat Terzi ◽  
Johannes Knabbe ◽  
Sidney B. Cambridge

SummaryGenetic engineering of quintuple transgenic brain tissue was used to establish a low background, Cre-dependent version of the inducible Tet-On system for fast, cell type-specific transgene expression in vivo. Co-expression of a constitutive, Cre-dependent fluorescent marker selectively allowed single cell analyses before and after inducible, tet-dependent transgene expression. Here, we used this method for acute, high-resolution manipulation of neuronal activity in the living brain. Single induction of the potassium channel Kir2.1 produced cell type-specific silencing within hours that lasted for at least three days. Longitudinal in vivo imaging of spontaneous calcium transients and neuronal morphology demonstrated that prolonged silencing did not alter spine densities or synaptic input strength. Furthermore, selective induction of Kir2.1 in parvalbumin interneurons increased the activity of surrounding neurons in a distance-dependent manner. This high-resolution, inducible interference and interval imaging of individual cells (high I5, ‘HighFive’) method thus allows visualizing temporally precise, genetic perturbations of defined cells.


2019 ◽  
Author(s):  
Anisha P. Adke ◽  
Aleisha Khan ◽  
Hye-Sook Ahn ◽  
Jordan J. Becker ◽  
Torri D. Wilson ◽  
...  

ABSTRACTCentral amygdala (CeA) neurons expressing protein kinase C delta (PKCδ+) or Somatostatin (Som+) differentially modulate diverse behaviors. The underlying features supporting cell-type-specific function in the CeA, however, remain unknown. Using whole-cell patch-clamp electrophysiology in acute mouse brain slices and biocytin-based neuronal reconstructions, we demonstrate that neuronal morphology and relative excitability are two distinguishing features between Som+ and PKCδ+ CeLC neurons. Som+ neurons, for example, are more excitable, compact and with more complex dendritic arborizations than PKCδ+ neurons. Cell size, intrinsic membrane properties, and anatomical localization were further shown to correlate with cell-type-specific differences in excitability. Lastly, in the context of neuropathic pain, we show a shift in the excitability equilibrium between PKCδ+ and Som+ neurons, suggesting that imbalances in the relative output of these cells underlie maladaptive changes in behaviors. Together, our results identify fundamentally important distinguishing features of PKCδ+ and Som+ cells that support cell-type-specific function in the CeA.


2017 ◽  
Vol 55 (05) ◽  
pp. e28-e56
Author(s):  
S Macheiner ◽  
R Gerner ◽  
A Pfister ◽  
A Moschen ◽  
H Tilg

Sign in / Sign up

Export Citation Format

Share Document