scholarly journals The Chromatin Remodelling Complex B-WICH Changes the Chromatin Structure and Recruits Histone Acetyl-Transferases to Active rRNA Genes

PLoS ONE ◽  
2011 ◽  
Vol 6 (4) ◽  
pp. e19184 ◽  
Author(s):  
Anna Vintermist ◽  
Stefanie Böhm ◽  
Fatemeh Sadeghifar ◽  
Emilie Louvet ◽  
Anethe Mansén ◽  
...  
Microbiology ◽  
2003 ◽  
Vol 149 (2) ◽  
pp. 341-351 ◽  
Author(s):  
Cristina Ruiz ◽  
Victoria Escribano ◽  
Eulalia Morgado ◽  
María Molina ◽  
María J. Mazón

1983 ◽  
Vol 3 (4) ◽  
pp. 720-730
Author(s):  
D Young ◽  
D Carroll

The chromatin structure of the oocyte-type 5S RNA genes in Xenopus laevis was investigated. Blot hybridization analysis of DNA from micrococcal nuclease digests of erythrocyte nuclei showed that 5S DNA has the same average nucleosome repeat length, 192 +/- 4 base pairs, as two Xenopus satellite DNAs and bulk erythrocyte chromatin. The positions of nuclease-sensitive regions in the 5S DNA repeats of purified DNA and chromatin from erythrocytes were mapped by using an indirect end-labeling technique. Although most of the sites cleaved in purified DNA were also cleaved in chromatin, the patterns of intensities were strikingly different in the two cases. In 5S chromatin, three nuclease-sensitive regions were spaced approximately a nucleosome length apart, suggesting a single, regular arrangement of nucleosomes on most of the 5S DNA repeats. The observed nucleosome locations are discussed with respect to nucleotide sequences known to be important for expression of 5S RNA. Because the preferred locations appear to be reestablished in each repeating unit, despite spacer length heterogeneity, we suggest that the regular chromatin structure reflects the presence of a sequence-specific DNA-binding component on inactive 5S RNA genes.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Iga Jancewicz ◽  
Janusz A. Siedlecki ◽  
Tomasz J. Sarnowski ◽  
Elzbieta Sarnowska

Abstract BRM (BRAHMA) is a core, SWI2/SNF2-type ATPase subunit of SWI/SNF chromatin-remodelling complex (CRC) involved in various important regulatory processes including development. Mutations in SMARCA2, a BRM-encoding gene as well as overexpression or epigenetic silencing were found in various human diseases including cancer. Missense mutations in SMARCA2 gene were recently connected with occurrence of Nicolaides–Baraitser genetics syndrome. By contrast, SMARCA2 duplication rather than mutations is characteristic for Coffin–Siris syndrome. It is believed that BRM usually acts as a tumour suppressor or a tumour susceptibility gene. However, other studies provided evidence that BRM function may differ depending on the cancer type and the disease stage, where BRM may play a role in the disease progression. The existence of alternative splicing forms of SMARCA2 gene, leading to appearance of truncated functional, loss of function or gain-of-function forms of BRM protein suggest a far more complicated mode of BRM-containing SWI/SNF CRCs actions. Therefore, the summary of recent knowledge regarding BRM alteration in various types of cancer and highlighting of differences and commonalities between BRM and BRG1, another SWI2/SNF2 type ATPase, will lead to better understanding of SWI/SNF CRCs function in cancer development/progression. BRM has been recently proposed as an attractive target for various anticancer therapies including the use of small molecule inhibitors, synthetic lethality induction or proteolysis-targeting chimera (PROTAC). However, such attempts have some limitations and may lead to severe side effects given the homology of BRM ATPase domain to other ATPases, as well as due to the tissue-specific appearance of BRM- and BRG1-containing SWI/SNF CRC classes. Thus, a better insight into BRM-containing SWI/SNF CRCs function in human tissues and cancers is clearly required to provide a solid basis for establishment of new safe anticancer therapies.


2011 ◽  
Vol 31 (2) ◽  
pp. 301-316 ◽  
Author(s):  
Sonia V Forcales ◽  
Sonia Albini ◽  
Lorenzo Giordani ◽  
Barbora Malecova ◽  
Luca Cignolo ◽  
...  

2009 ◽  
Vol 11 (8) ◽  
pp. 1010-1016 ◽  
Author(s):  
Yonggang Zhou ◽  
Kerstin-Maike Schmitz ◽  
Christine Mayer ◽  
Xuejun Yuan ◽  
Asifa Akhtar ◽  
...  

2016 ◽  
Vol 36 (3) ◽  
Author(s):  
Sneha Lal ◽  
Md Maksudul Alam ◽  
Jagmohan Hooda ◽  
Ajit Shah ◽  
Thai M. Cao ◽  
...  

Swi3 is a key component of the well-known SWI–SNF chromatin remodelling complex. Here, we discovered a novel Swi3 function: Swi3 and its mammalian homologues suppress oxygen consumption, and Swi3 regulates the expression of aerobic respiration genes in an oxygen-dependent manner.


1994 ◽  
Vol 14 (1) ◽  
pp. 318-326 ◽  
Author(s):  
R Lucchini ◽  
J M Sogo

Replication intermediates containing forks arrested at the replication fork barrier near the 3' end of the yeast rRNA genes were analyzed at the chromatin level by using in vivo psoralen cross-linking as a probe for chromatin structure. These specific intermediates were purified from preparative two-dimensional agarose gels, and the extent of cross-linking in the different portions of the branched molecules was examined by electron microscopy and by using a psoralen gel retardation assay. The unreplicated section corresponding to the rRNA coding region upstream of the arrested forks appeared mostly heavily cross-linked, characteristic of transcriptionally active rRNA genes devoid of nucleosomes, whereas the replicated daughter strands representing newly synthesized spacer sequences showed a nucleosomal organization typical for bulk chromatin. The failure to detect replication forks arrested at the 3' end of inactive rRNA gene copies and the fact that most DNA encoding rRNA (rDNA) is replicated in the same direction as transcription suggest that replication forks seldom originate from origins of replication located immediately downstream of inactive genes.


Sign in / Sign up

Export Citation Format

Share Document