scholarly journals Modelling Co-Infection of the Cystic Fibrosis Lung by Pseudomonas aeruginosa and Burkholderia cenocepacia Reveals Influences on Biofilm Formation and Host Response

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52330 ◽  
Author(s):  
Alessandra Bragonzi ◽  
Ilaria Farulla ◽  
Moira Paroni ◽  
Kate B. Twomey ◽  
Luisa Pirone ◽  
...  
2004 ◽  
Vol 72 (3) ◽  
pp. 1479-1486 ◽  
Author(s):  
Anna M. van Heeckeren ◽  
Mark Schluchter ◽  
Lintong Xue ◽  
Juan Alvarez ◽  
Steven Freedman ◽  
...  

ABSTRACT In cystic fibrosis, a recessive genetic disease caused by defects in the cystic fibrosis conductance regulator (CFTR), the main cause of death is lung infection and inflammation. Nutritional deficits have been proposed to contribute to the excessive host inflammatory response in both humans and Cftr-knockout mice. Cftr-knockout mice and gut-corrected Cftr-knockout mice expressing human CFTR primarily in the gut were challenged with Pseudomonas aeruginosa-laden agarose beads; they responded similarly with respect to bronchoalveolar lavage cell counts and levels of the acute-phase cytokines tumor necrosis factor alpha, interleukin-1β (IL-1β), and IL-6. Wild-type mice fed the liquid diet used to prevent intestinal obstruction in Cftr-knockout mice had inflammatory responses to P. aeruginosa-laden agarose beads similar to those of wild-type mice fed an enriched solid diet, so dietary effects are unlikely to account for differences between wild-type mice and mice with cystic fibrosis. Finally, since cystic fibrosis patients and Cftr-knockout mice have an imbalance in fatty acids (significantly lower-than-normal levels of docosahexaenoic acid), the effects of specific supplementation with docosahexaenoic acid of wild-type and Cftr-knockout mice on their inflammatory responses to P. aeruginosa-laden agarose beads were tested. There were no significant differences (P = 0.35) in cumulative survival rates between Cftr-knockout mice and wild-type mice provided with either the liquid diet Peptamen or Peptamen containing docosahexaenoic acid. In conclusion, diet and docosahexaenoic acid imbalances alone are unlikely to explain the differences in the host response to lung infections with mucoid P. aeruginosa between mice with cystic fibrosis and their wild-type counterparts.


2008 ◽  
Vol 21 (4) ◽  
pp. 595-599 ◽  
Author(s):  
Sophie Moreau-Marquis ◽  
Bruce A. Stanton ◽  
George A. O’Toole

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Eva Vandeplassche ◽  
Andrea Sass ◽  
Astrid Lemarcq ◽  
Ajai A. Dandekar ◽  
Tom Coenye ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Christopher J. Jones ◽  
Daniel J. Wozniak

ABSTRACT Despite years of research and clinical advances, chronic pulmonary infections with mucoid Pseudomonas aeruginosa remain the primary concern for cystic fibrosis patients. Much of the research on these strains has focused on the contributions of the polysaccharide alginate; however, it is becoming evident that the neutral polysaccharide Psl also contributes to biofilm formation and the maintenance of chronic infections. Here, we demonstrate that Psl produced by mucoid strains has significant roles in biofilm structure and evasion of immune effectors. Though mucoid strains produce less Psl than nonmucoid strains, the Psl that is produced is functional, since it mediates adhesion to human airway cells and epithelial cell death. Additionally, Psl protects mucoid bacteria from opsonization and killing by complement components in human serum. Psl production by mucoid strains stimulates a proinflammatory response in the murine lung, leading to reduced colonization. To determine the relevance of these data to clinical infections, we tested Psl production and biofilm formation of a panel of mucoid clinical isolates. We demonstrated three classes of mucoid isolates, those that produce Psl and form robust biofilms, those that did not produce Psl and have a poor biofilm phenotype, and exopolysaccharide (EPS) redundant strains. Collectively, these experimental results demonstrate that Psl contributes to the biofilm formation and immune evasion of many mucoid strains. This is a novel role for Psl in the establishment and maintenance of chronic pulmonary infections by mucoid strains. IMPORTANCE Cystic fibrosis patients are engaged in an ongoing battle against chronic lung infections by the bacterium Pseudomonas aeruginosa. One key factor contributing to the maintenance of chronic infections is the conversion to a mucoid phenotype, where the bacteria produce copious amounts of the polysaccharide alginate. Once the bacteria become mucoid, existing treatments are poorly effective. We proposed that mucoid bacteria produce an additional polysaccharide, Psl, which is important for their establishment and maintenance of chronic infections. This work demonstrates that Psl enhances attachment of mucoid bacteria to lung surfaces and leads to inflammation and damage in the lung. Additionally, we find that 50% of mucoid bacteria isolated from patients with chronic infections rely on Psl for the structure of their biofilm communities, suggesting that treatments against Psl should be investigated to enhance the success of current therapies. IMPORTANCE Cystic fibrosis patients are engaged in an ongoing battle against chronic lung infections by the bacterium Pseudomonas aeruginosa. One key factor contributing to the maintenance of chronic infections is the conversion to a mucoid phenotype, where the bacteria produce copious amounts of the polysaccharide alginate. Once the bacteria become mucoid, existing treatments are poorly effective. We proposed that mucoid bacteria produce an additional polysaccharide, Psl, which is important for their establishment and maintenance of chronic infections. This work demonstrates that Psl enhances attachment of mucoid bacteria to lung surfaces and leads to inflammation and damage in the lung. Additionally, we find that 50% of mucoid bacteria isolated from patients with chronic infections rely on Psl for the structure of their biofilm communities, suggesting that treatments against Psl should be investigated to enhance the success of current therapies.


Sign in / Sign up

Export Citation Format

Share Document