lung microbiome
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 171)

H-INDEX

32
(FIVE YEARS 8)

Author(s):  
Mi-Jin Jeong ◽  
Soyeon Jeon ◽  
Hak-Sun Yu ◽  
Wan-Seob Cho ◽  
Seungho Lee ◽  
...  

Nickel oxide nanoparticles (NiO NPs) are highly redox active nanoparticles. They can cause acute and chronic inflammation in rat lungs. Unlike the gut microbiome, the association between the lung microbiome’s role and pulmonary inflammatory response to inhaled nanoparticles remains largely unexplored. We aimed to explore the interaction between the lung microbiome and inflammatory responses in rats exposed to NiO NPs. Thirty female Wistar rats were randomly categorized into control and low- (50 cm2/rat), and high- (150 cm2/rat) dose NiO NPs exposure groups. NiO NPs were intratracheally instilled, and cytological, biochemical, proinflammatory cytokine, and lung microbiome analyses of bronchoalveolar lavage fluid were performed at 1 day and 4 weeks after instillation. NiO NPs caused a neutrophilic and lymphocytic inflammatory response in rat lung. We demonstrated that exposure to NiO NPs can alter the lung microbial composition in rats. In particular, we found that more Burkholderiales are present in the NiO NPs exposure groups than in the control group at 1 day after instillation. Dysbiosis in the lung microbiome is thought to be associated with acute lung inflammation. We also suggested that Burkholderiales may be a key biomarker associated with lung neutrophilic inflammation after NiO NPs exposure.


2021 ◽  
pp. 1-12
Author(s):  
Melanie Fromentin ◽  
Antoine Bridier-Nahmias ◽  
Jérôme Legoff ◽  
Severine Mercier-Delarue ◽  
Noémie Ranger ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Zhou ◽  
Youxia Liao

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common acute and severe cases of the respiratory system with complicated pathogenesis and high mortality. Sepsis is the leading indirect cause of ALI/ARDS in the intensive care unit (ICU). The pathogenesis of septic ALI/ARDS is complex and multifactorial. In the development of sepsis, the disruption of the intestinal barrier function, the alteration of gut microbiota, and the translocation of the intestinal microbiome can lead to systemic and local inflammatory responses, which further alter the immune homeostasis in the systemic environment. Disruption of homeostasis may promote and propagate septic ALI/ARDS. In turn, when ALI occurs, elevated levels of inflammatory cytokines and the shift of the lung microbiome may lead to the dysregulation of the intestinal microbiome and the disruption of the intestinal mucosal barrier. Thus, the interaction between the lung and the gut can initiate and potentiate sepsis-induced ALI/ARDS. The gut–lung crosstalk may be a promising potential target for intervention. This article reviews the underlying mechanism of gut-lung crosstalk in septic ALI/ARDS.


Author(s):  
Marisa I. Metzger ◽  
Simon Y. Graeber ◽  
Mirjam Stahl ◽  
Olaf Sommerburg ◽  
Marcus A. Mall ◽  
...  

Progressive impairment in lung function caused by chronic polymicrobial airway infection remains the major cause of death in patients with cystic fibrosis (CF). Cross-sectional studies suggest an association between lung function decline and specific lung microbiome ecotypes. However, longitudinal studies on the stability of the airway microbiome are missing for adolescents with CF constituting the age group showing the highest rate of decline in lung function. In this study, we analyzed longitudinal lung function data and sputum samples collected over a period of 3 to 5 years from 12 adolescents with CF. The sputum microbiome was analyzed using 16S rRNA gene sequencing. Our results indicate that the individual course of the lung microbiome is associated with longitudinal lung function. In our cohort, patients with a dynamic, diverse microbiome showed a slower decline of lung function measured by FEV1% predicted, whereas a more stable and less diverse lung microbiome was related to worse outcomes. Specifically, a higher abundance of the phyla Bacteroidetes and Firmicutes was linked to a better clinical outcome, while Proteobacteria were correlated with a decline in FEV1% predicted. Our study indicates that the stability and diversity of the lung microbiome and the abundance of Bacteroidetes and Firmicutes are associated with the lung function decline and are one of the contributing factors to the disease severity.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hye Jin Jang ◽  
Ji Yeon Choi ◽  
Kangjoon Kim ◽  
Seung Hyun Yong ◽  
Yeon Wook Kim ◽  
...  

Abstract Background Lung cancer is the primary cause of cancer-related deaths worldwide. The human lung serves as a niche to a unique and dynamic bacterial community that is related to the development of multiple diseases. Here, we investigated the differences in the lung microbiomes of patients with lung cancer. Methods 16S rRNA sequencing was performed to evaluate the respiratory tract microbiome present in the bronchoalveolar lavage fluid. Patients were stratified based on programmed death-ligand 1 (PD-L1) expression levels and immunotherapy responses. Results In total, 84 patients were prospectively analyzed, of which 59 showed low (< 10%), and 25 showed high (≥ 10%) PD-L1 expression levels. The alpha and beta diversities did not significantly differ between the two groups. Veillonella dispar was dominant in the high-PD-L1 group; the population of Neisseria was significantly higher in the low-PD-L1 group than in the high-PD-L1 group. In the immunotherapy responder group, V. dispar was dominant, while Haemophilus influenzae and Neisseria perflava were dominant in the non-responder group. Conclusion The abundances of Neisseria and V. dispar differed significantly in relation to PD-L1 expression levels and immunotherapy responses.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sadaf Najafi ◽  
Fatemeh Abedini ◽  
Sadegh Azimzadeh Jamalkandi ◽  
Parvin Shariati ◽  
Ali Ahmadi ◽  
...  

Abstract Background Although recent studies have indicated that imbalance in the respiratory microbiome composition is linked to several chronic respiratory diseases, the association between the lung microbiome and lung cancer has not been extensively studied. Conflicting reports of individual studies on respiratory microbiome alterations in lung cancer complicate the matter for specifying how the lung microbiome is linked to lung cancer. Consequently, as the first meta-analysis on this topic, we integrate publicly available 16S rRNA gene sequence data on lung tissue samples of lung cancer patients to identify bacterial taxa which differ consistently between case and control groups. Results The findings of the current study suggest that the relative abundance of several bacterial taxa including Actinobacteria phylum, Corynebacteriaceae and Halomonadaceae families, and Corynebacterium, Lachnoanaerobaculum, and Halomonas genera is significantly decreased (p < 0.05) in lung tumor tissues of lung cancer patients in comparison with tumor-adjacent normal tissues. Conclusions Despite the underlying need for scrutinizing the findings further, the present study lays the groundwork for future research and adds to our limited understanding of the key role of the lung microbiome and its complex interaction with lung cancer. More data on demographic factors and tumor tissue types would help establish a greater degree of accuracy in characterizing the lung microbial community which accords with subtypes and stages of the disease and fully capturing the changes of the lung microbiome in lung cancer.


Sign in / Sign up

Export Citation Format

Share Document