scholarly journals Whole Genome Duplication and Enrichment of Metal Cation Transporters Revealed by De Novo Genome Sequencing of Extremely Halotolerant Black Yeast Hortaea werneckii

PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e71328 ◽  
Author(s):  
Metka Lenassi ◽  
Cene Gostinčar ◽  
Shaun Jackman ◽  
Martina Turk ◽  
Ivan Sadowski ◽  
...  
2018 ◽  
Author(s):  
Zelin Chen ◽  
Yoshihiro Omori ◽  
Sergey Koren ◽  
Takuya Shirokiya ◽  
Takuo Kuroda ◽  
...  

SummaryFor over a thousand years throughout Asia, the common goldfish (Carassius auratus) was raised for both food and as an ornamental pet. Selective breeding over more than 500 years has created a wide array of body and pigmentation variation particularly valued by ornamental fish enthusiasts. As a very close relative of the common carp (Cyprinus carpio), goldfish shares the recent genome duplication that occurred approximately 14-16 million years ago (mya) in their common ancestor. The combination of centuries of breeding and a wide array of interesting body morphologies is an exciting opportunity to link genotype to phenotype as well as understanding the dynamics of genome evolution and speciation. Here we generated a high-quality draft sequence of a “Wakin” goldfish using 71X PacBio long-reads. We identified 70,324 coding genes and more than 11,000 non-coding transcripts. We found that the two sub-genomes in goldfish retained extensive synteny and collinearity between goldfish and zebrafish. However, “ohnologous” genes were lost quickly after the carp whole-genome duplication, and the expression of 30% of the retained duplicated gene diverged significantly across seven tissues sampled. Loss of sequence identity and/or exons determined the divergence of the expression across all tissues, while loss of conserved, non-coding elements determined expression variance between different tissues. This draft assembly also provides an important resource for comparative genomics with the very commonly used zebrafish model (Danio rerio), and for understanding the underlying genetic causes of goldfish variants.


Life ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 229
Author(s):  
Orazio Romeo ◽  
Alessia Marchetta ◽  
Domenico Giosa ◽  
Letterio Giuffrè ◽  
Clara Urzì ◽  
...  

Hortaea werneckii, an extreme halotolerant black yeast in the order of Capnodiales, was recently isolated from different stations and depths in the Mediterranean Sea, where it was shown to be the dominant fungal species. In order to explore the genome characteristics of these Mediterranean isolates, we carried out a de-novo sequencing of the genome of one strain isolated at a depth of 3400 m (MC873) and a re-sequencing of one strain taken from a depth of 2500 m (MC848), whose genome was previously sequenced but was highly fragmented. A comparative phylogenomic analysis with other published H. werneckii genomes was also carried out to investigate the evolution of the strains from the deep sea in this environment. A high level of genome completeness was obtained for both genomes, for which genome duplication and an extensive level of heterozygosity (~4.6%) were observed, supporting the recent hypothesis that a genome duplication caused by intraspecific hybridization occurred in most H. werneckii strains. Phylogenetic analyses showed environmental and/or geographical specificity, suggesting a possible evolutionary adaptation of marine H. werneckii strains to the deep sea environment. We release high-quality genome assemblies from marine H. werneckii strains, which provides additional data for further genomics analysis, including niche adaptation, fitness and evolution studies.


2020 ◽  
Author(s):  
Kenta Shirasawa ◽  
Akihiro Itai ◽  
Sachiko Isobe

AbstractAimThe Japanese pear (P. pyrifolia) variety ‘Nijisseiki’ is valued for its superior flesh texture, which has led to its use as a breeding parent for most Japanese pear cultivars. However, in the absence of genomic resources for Japanese pear, the parents of the ‘Nijisseiki’ cultivar remain unknown, as does the genetic basis of its favorable texture. The genomes of pear and related species are complex due to ancestral whole genome duplication and high heterozygosity, and long-sequencing technology was used to address this.Methods and ResultsDe novo assembly of long sequence reads covered 136× of the Japanese pear genome and generated 503.9 Mb contigs consisting of 114 sequences with an N50 value of 7.6□Mb. Contigs were assigned to Japanese pear genetic maps to establish 17 chromosome-scale sequences. In total, 44,876 protein-encoding genes were predicted, 84.3% of which were supported by predicted genes and transcriptome data from Japanese pear relatives. As expected, evidence of whole genome duplication was observed, consistent with related species.Conclusion and PerspectiveThis is the first genome sequence analysis reported for Japanese pear, and this resource will support breeding programs and provide new insights into the physiology and evolutionary history of Japanese pear.


2019 ◽  
Vol 5 (6) ◽  
pp. eaav0547 ◽  
Author(s):  
Zelin Chen ◽  
Yoshihiro Omori ◽  
Sergey Koren ◽  
Takuya Shirokiya ◽  
Takuo Kuroda ◽  
...  

For over a thousand years, the common goldfish (Carassius auratus) was raised throughout Asia for food and as an ornamental pet. As a very close relative of the common carp (Cyprinus carpio), goldfish share the recent genome duplication that occurred approximately 14 million years ago in their common ancestor. The combination of centuries of breeding and a wide array of interesting body morphologies provides an exciting opportunity to link genotype to phenotype and to understand the dynamics of genome evolution and speciation. We generated a high-quality draft sequence and gene annotations of a “Wakin” goldfish using 71X PacBio long reads. The two subgenomes in goldfish retained extensive synteny and collinearity between goldfish and zebrafish. However, genes were lost quickly after the carp whole-genome duplication, and the expression of 30% of the retained duplicated gene diverged substantially across seven tissues sampled. Loss of sequence identity and/or exons determined the divergence of the expression levels across all tissues, while loss of conserved noncoding elements determined expression variance between different tissues. This assembly provides an important resource for comparative genomics and understanding the causes of goldfish variants.


2017 ◽  
Vol 7 (7) ◽  
pp. 2015-2022 ◽  
Author(s):  
Sunita Sinha ◽  
Stephane Flibotte ◽  
Mauricio Neira ◽  
Sean Formby ◽  
Ana Plemenitaš ◽  
...  

Abstract Extremophilic organisms demonstrate the flexibility and adaptability of basic biological processes by highlighting how cell physiology adapts to environmental extremes. Few eukaryotic extremophiles have been well studied and only a small number are amenable to laboratory cultivation and manipulation. A detailed characterization of the genome architecture of such organisms is important to illuminate how they adapt to environmental stresses. One excellent example of a fungal extremophile is the halophile Hortaea werneckii (Pezizomycotina, Dothideomycetes, Capnodiales), a yeast-like fungus able to thrive at near-saturating concentrations of sodium chloride and which is also tolerant to both UV irradiation and desiccation. Given its unique lifestyle and its remarkably recent whole genome duplication, H. werneckii provides opportunities for testing the role of genome duplications and adaptability to extreme environments. We previously assembled the genome of H. werneckii using short-read sequencing technology and found a remarkable degree of gene duplication. Technology limitations, however, precluded high-confidence annotation of the entire genome. We therefore revisited the H. wernickii genome using long-read, single-molecule sequencing and provide an improved genome assembly which, combined with transcriptome and nucleosome analysis, provides a useful resource for fungal halophile genomics. Remarkably, the ∼50 Mb H. wernickii genome contains 15,974 genes of which 95% (7608) are duplicates formed by a recent whole genome duplication (WGD), with an average of 5% protein sequence divergence between them. We found that the WGD is extraordinarily recent, and compared to Saccharomyces cerevisiae, the majority of the genome’s ohnologs have not diverged at the level of gene expression of chromatin structure.


2017 ◽  
Author(s):  
Yang Jin ◽  
Rolf Erik Olsen ◽  
Mari-Ann Østensen ◽  
Gareth Benjamin Gillard ◽  
Sven Arild Korsvoll ◽  
...  

AbstractBackgroundIt has been suggested that the high phospholipid (PL) requirement in Atlantic salmon (Salmo salar) fry is due to insufficient intestinal de-novo synthesis causing low lipoprotein (LP) production and reduced transport capacity of dietary lipids. However, there has not been performed any in-depth ontological analysis of intestinal PL and LP synthesis with development of salmon. Therefore in this paper we used RNA-seq technology to test the hypothesis that the high PL requirement in salmon fry was associated with undeveloped PL synthesis and LP formation pathways in intestine. There was a special focus on the understanding homologous genes, especially from salmonid-specific fourth vertebrate whole-genome duplication (Ss4R), contribution to salmonid specific features of regulation of PL metabolic pathways. The study was performed in stomach, pyloric caeca and hindgut at 0.16g (1 day before first-feeding), 2.5g and 10g of salmon.ResultsIn general, we found an up-regulation of de-novo phosphatidylcholine (PtdCho) synthesis, phosphatidylethanolamine (PtdEtn) and LP formation pathways in pyloric caeca of salmon between 0.16g and 10g. Thirteen genes in these pathways were highly (q<0.05) up-regulated in 2.5g salmon compared to 0.16g, while only five more significant (q<0.05) genes were found when the fish grew up to 10g. Different homologous genes were found dominating in stomach, pyloric caeca and hindgut. However, the expression of dominating genes in PL and LP synthesis pathways was much higher in pyloric caeca than stomach and hindgut. Salmon-specific homologous (Ss4R) genes had similar expression during development, while other homologs had more diverged expression.ConclusionsAn increasing capacity for PL synthesis and LP formation was confirmed in pyloric caeca. The up-regulation of the de-novo PtdCho pathway confirms that the salmon fry have increasing requirement for dietary PtdCho compared to adult. The similar expressions between Ss4R homologous genes suggest that the functional divergence of these genes was incomplete compared to homologs derived from other whole genome duplication. The results of the present study have provided new information on the molecular mechanisms of phospholipid synthesis and lipoprotein formation in fish.


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1249-1257
Author(s):  
Ilya Ruvinsky ◽  
Lee M Silver ◽  
Jeremy J Gibson-Brown

Abstract The duplication of preexisting genes has played a major role in evolution. To understand the evolution of genetic complexity it is important to reconstruct the phylogenetic history of the genome. A widely held view suggests that the vertebrate genome evolved via two successive rounds of whole-genome duplication. To test this model we have isolated seven new T-box genes from the primitive chordate amphioxus. We find that each amphioxus gene generally corresponds to two or three vertebrate counterparts. A phylogenetic analysis of these genes supports the idea that a single whole-genome duplication took place early in vertebrate evolution, but cannot exclude the possibility that a second duplication later took place. The origin of additional paralogs evident in this and other gene families could be the result of subsequent, smaller-scale chromosomal duplications. Our findings highlight the importance of amphioxus as a key organism for understanding evolution of the vertebrate genome.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brent S. Pedersen ◽  
Joe M. Brown ◽  
Harriet Dashnow ◽  
Amelia D. Wallace ◽  
Matt Velinder ◽  
...  

AbstractIn studies of families with rare disease, it is common to screen for de novo mutations, as well as recessive or dominant variants that explain the phenotype. However, the filtering strategies and software used to prioritize high-confidence variants vary from study to study. In an effort to establish recommendations for rare disease research, we explore effective guidelines for variant (SNP and INDEL) filtering and report the expected number of candidates for de novo dominant, recessive, and autosomal dominant modes of inheritance. We derived these guidelines using two large family-based cohorts that underwent whole-genome sequencing, as well as two family cohorts with whole-exome sequencing. The filters are applied to common attributes, including genotype-quality, sequencing depth, allele balance, and population allele frequency. The resulting guidelines yield ~10 candidate SNP and INDEL variants per exome, and 18 per genome for recessive and de novo dominant modes of inheritance, with substantially more candidates for autosomal dominant inheritance. For family-based, whole-genome sequencing studies, this number includes an average of three de novo, ten compound heterozygous, one autosomal recessive, four X-linked variants, and roughly 100 candidate variants following autosomal dominant inheritance. The slivar software we developed to establish and rapidly apply these filters to VCF files is available at https://github.com/brentp/slivar under an MIT license, and includes documentation and recommendations for best practices for rare disease analysis.


Sign in / Sign up

Export Citation Format

Share Document