scholarly journals Enhancing the Laccase Production and Laccase Gene Expression in the White-Rot Fungus Trametes velutina 5930 with Great Potential for Biotechnological Applications by Different Metal Ions and Aromatic Compounds

PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e79307 ◽  
Author(s):  
Yang Yang ◽  
Fuxiang Wei ◽  
Rui Zhuo ◽  
Fangfang Fan ◽  
Huahua Liu ◽  
...  
2012 ◽  
Vol 78 (16) ◽  
pp. 5845-5854 ◽  
Author(s):  
Yang Yang ◽  
Fangfang Fan ◽  
Rui Zhuo ◽  
Fuying Ma ◽  
Yangmin Gong ◽  
...  

ABSTRACTLaccase is a copper-containing polyphenol oxidase that has great potential in industrial and biotechnological applications. Previous research has suggested that fungal laccase may be involved in the defense against oxidative stress, but there is little direct evidence supporting this hypothesis, and the mechanism by which laccase protects cells from oxidative stress also remains unclear. Here, we report that the expression of the laccase gene from white rot fungus inPichia pastoriscan significantly enhance the resistance of yeast to H2O2-mediated oxidative stress. The expression of laccase in yeast was found to confer a strong ability to scavenge intracellular H2O2and to protect cells from lipid oxidative damage. The mechanism by which laccase gene expression increases resistance to oxidative stress was then investigated further. We found that laccase gene expression inPichia pastoriscould increase the level of glutathione-based antioxidative activity, including the intracellular glutathione levels and the enzymatic activity of glutathione peroxidase, glutathione reductase, and γ-glutamylcysteine synthetase. The transcription of the laccase gene inPichia pastoriswas found to be enhanced by the oxidative stress caused by exogenous H2O2. The stimulation of laccase gene expression in response to exogenous H2O2stress further contributed to the transcriptional induction of the genes involved in the glutathione-dependent antioxidative system, includingPpYAP1,PpGPX1,PpPMP20,PpGLR1, andPpGSH1. Taken together, these results suggest that the expression of the laccase gene inPichia pastoriscan enhance the resistance of yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system to protect the cell from oxidative damage.


2008 ◽  
Vol 159 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Tania González ◽  
María Carmen Terrón ◽  
Susana Yagüe ◽  
Howard Junca ◽  
José María Carbajo ◽  
...  

2019 ◽  
Vol 7 (9) ◽  
pp. 304 ◽  
Author(s):  
Bo Ram Kang ◽  
Soo Bin Kim ◽  
Hyun A Song ◽  
Tae Kwon Lee

High-density polyethylene (HDPE) is a widely used organic polymer and an emerging pollutant, because it is very stable and nonbiodegradable. Several fungal species that produce delignifying enzymes are known to be promising degraders of recalcitrant polymers, but research on the decomposition of plastics is scarce. In this study, white rot fungus, Bjerkandera adusta TBB-03, was isolated and characterized for its ability to degrade HDPE under lignocellulose substrate treatment. Ash (Fraxinus rhynchophylla) wood chips were found to stimulate laccase production (activity was > 210 U/L after 10 days of cultivation), and subsequently used for HDPE degradation assay. After 90 days, cracks formed on the surface of HDPE samples treated with TBB-03 and ash wood chips in both liquid and solid states. Raman analysis showed that the amorphous structure of HDPE was degraded by enzymes produced by TBB-03. Overall, TBB-03 is a promising resource for the biodegradation of HDPE, and this work sheds light on further applications for fungus-based plastic degradation systems.


2003 ◽  
Vol 69 (12) ◽  
pp. 7083-7090 ◽  
Author(s):  
Tania González ◽  
María C. Terrón ◽  
Ernesto J. Zapico ◽  
Alejandro Téllez ◽  
Susana Yagüe ◽  
...  

ABSTRACT Laccases produced by white rot fungi are involved in the degradation of lignin and a broad diversity of other natural and synthetic molecules, having a great potential for biotechnological applications. They are frequently encoded by gene families, as in the basidiomycete Trametes sp. strain I-62, from which the lcc1, lcc2, and lcc3 laccase genes have been cloned and sequenced. A multiplex reverse transcription-PCR method to simultaneously study the expression of these genes was developed in this study. The assay proved to be quick, simple, highly sensitive, and reproducible and is particularly valuable when numerous samples are to be analyzed and/or if the amount of initial mRNA is limited. It was used to analyze the effect of 3,4-dimethoxybenzyl alcohol (veratryl alcohol) and two of its isomers (2,5-dimethoxybenzyl alcohol and 3,5-dimethoxybenzyl alcohol) on differential laccase gene expression in Trametes sp. strain I-62. These aromatic compounds produced different induction patterns despite their chemical similarity. We found 2,5-dimethoxybenzyl alcohol to be the best inducer of laccase activity while also producing the highest increase in gene expression; 3,5-dimethoxybenzyl alcohol was the next best inducer. Transcript amounts of each gene fluctuated dramatically in the presence of these three inducers, while the total amounts of laccase mRNAs seemed to be modulated by a coordinated regulation of the different genes.


2001 ◽  
Vol 92 (4) ◽  
pp. 372-380 ◽  
Author(s):  
HISASHI HOSHIDA ◽  
MITSUHIDE NAKAO ◽  
HIDENOBU KANAZAWA ◽  
KANAKO KUBO ◽  
TORU HAKUKAWA ◽  
...  

2020 ◽  
Author(s):  
Jianqiao Wang ◽  
Tomohiro Suzuki ◽  
Hideo Dohra ◽  
Toshio Mori ◽  
Hirokazu Kawagishi ◽  
...  

Abstract Background Lignocellulosic biomass is an organic matrix composed of cellulose, hemicellulose, and lignin. In nature, lignin degradation by basidiomycetes is the key step in lignocellulose decay. The white-rot fungus Phanerochaete sordida YK-624 (YK-624) has been extensively studied due to its high lignin degradation ability. In our previous study, it was demonstrated that YK-624 can secrete lignin peroxidase and manganese peroxidase for lignin degradation. However, the underlying mechanism for lignin degradation by YK-624 remains unknown.Results Here, we analyzed YK-624 gene expression following growth under ligninolytic and nonligninolytic conditions and compared the differentially expressed genes in YK-624 to those in the model white-rot fungus P. chrysosporium by next-generation sequencing. More ligninolytic enzymes and lignin-degrading auxiliary enzymes were upregulated in YK-624. This might explain the high degradation efficiency of YK-624. In addition, the genes involved in energy metabolism pathways, such as the TCA cycle, oxidative phosphorylation, lipid metabolism, carbon metabolism and glycolysis, were upregulated under ligninolytic conditions in YK-624.Conclusions In the present study, the first differential gene expression analysis of YK-624 under ligninolytic and nonligninolytic conditions was reported. The results obtained in this study indicated that YK-624 produces more energy- and lignin-degrading enzymes for more efficient lignin biodegradation.


2018 ◽  
Vol 64 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Rosario Díaz Rodríguez ◽  
Gabriela Heredia ◽  
José A. Siles ◽  
Miguel Jurado ◽  
Mario Carlos Nazareno Saparrat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document