coriolus versicolor
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 51)

H-INDEX

34
(FIVE YEARS 5)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Quan Li ◽  
Xiangyang Li ◽  
Hui Lin

The extracts of decay-resistant tree species are important research objects for the future development of wood preservatives. To understand the antifungal mechanisms of Coriolus versicolor inhibition with methanol extracts of C. camphora xylem, the protein profiles of C. versicolor were analyzed using 2-DE followed by MALDI-TOF/MS and bioinformatic analyses. The results showed that 41 protein spots were obviously changed among the 366-385 protein spots of C. versicolor treated with methanol extracts of C. camphora xylem. Twenty-one protein spots were upregulated, and 20 protein spots were downregulated. Cellular localization was performed to identify these differential proteins, and biological process and functional analysis found that 9 of these proteins were in the cytoplasm, 6 were intracellular, and 5 were in the mitochondrion. A total of 18.8% were mapped to small-molecule metabolic processes, 12.5% to cellular amino acid metabolic processes, and 10.9% to cellular nitrogen compound metabolic processes. Twenty-five percent of the differential proteins were associated with ion bonding, 15% with oxidoreductase activity, and 15% with ATPase activity and transmembrane transport activity. Downregulated expression of aspartate aminotransferase, ATP synthase alpha chain, DEAD/DEAH-box helicase, and phosphoglycerate kinase showed that the methanol extracts of C. camphora xylem disrupted functional aspects such as nitrogen and carbon metabolism, energy metabolism, hormone signal response, and glucose metabolism, eventually leading to C. versicolor inhibition.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 898
Author(s):  
Ramona D’Amico ◽  
Angela Trovato Salinaro ◽  
Roberta Fusco ◽  
Marika Cordaro ◽  
Daniela Impellizzeri ◽  
...  

Traumatic brain injury (TBI) is a major health and socioeconomic problem affecting the world. This condition results from the application of external physical force to the brain which leads to transient or permanent structural and functional impairments. TBI has been shown to be a risk factor for neurodegeneration which can lead to Parkinson’s disease (PD) for example. In this study, we wanted to explore the development of PD-related pathology in the context of an experimental model of TBI and the potential ability of Coriolus versicolor and Hericium erinaceus to prevent neurodegenerative processes. Traumatic brain injury was induced in mice by controlled cortical impact. Behavioral tests were performed at various times: the animals were sacrificed 30 days after the impact and the brain was processed for Western blot and immunohistochemical analyzes. After the head injury, a significant decrease in the expression of tyrosine hydroxylase and the dopamine transporter in the substantia nigra was observed, as well as significant behavioral alterations that were instead restored following daily oral treatment with Hericium erinaceus and Coriolus versicolor. Furthermore, a strong increase in neuroinflammation and oxidative stress emerged in the vehicle groups. Treatment with Hericium erinaceus and Coriolus versicolor was able to prevent both the neuroinflammatory and oxidative processes typical of PD. This study suggests that PD-related molecular events may be triggered on TBI and that nutritional fungi such as Hericium erinaceus and Coriolus versicolor may be important in redox stress response mechanisms and neuroprotection, preventing the progression of neurodegenerative diseases such as PD.


2021 ◽  
Vol 22 (11) ◽  
pp. 5735
Author(s):  
Małgorzata Pawlikowska ◽  
Tomasz Jędrzejewski ◽  
Andrzej T. Slominski ◽  
Anna A. Brożyna ◽  
Sylwia Wrotek

Melanoma, the malignancy originating from pigment-producing melanocytes, is the most aggressive form of skin cancer and has a poor prognosis once the disease starts to metastasize. The process of melanin synthesis generates an immunosuppressive and mutagenic environment, and can increase melanoma cell resistance to different treatment modalities, including chemo-, radio- or photodynamic therapy. Recently, we have shown that the presence of melanin pigment inhibits the melanoma cell response to bioactive components of Coriolus versicolor (CV) Chinese fungus. Herein, using the same human melanoma cell line in which the level of pigmentation can be controlled by the L-tyrosine concentration in culture medium, we tested the effect of suppression of melanogenesis on the melanoma cell response to CV extract and investigated the cell death pathway induced by fungus extract in sensitized melanoma cells. Our data showed that susceptibility to CV-induced melanoma cell death is significantly increased after cell depigmentation. To the best of our knowledge, we are the first to demonstrate that CV extract can induce RIPK1/RIPK3/MLKL-mediated necroptosis in depigmented melanoma cells. Moreover, using the co-culture system, we showed that inhibition of the tyrosinase activity in melanoma cells modulates cytokine expression in co-cultured mononuclear cells, indicating that depigmentation of melanoma cells may activate immune cells and thereby influence a host anticancer response.


2021 ◽  
Vol 25 (2) ◽  
pp. 130-136
Author(s):  
Luis Serrano ◽  
Andrés Carlos López ◽  
Silvia P. González ◽  
Santiago Palacios ◽  
Damián Dexeus ◽  
...  

2021 ◽  
Vol 60 (1) ◽  
Author(s):  
Danka Matijašević ◽  
Milena Pantić ◽  
Nemanja Stanisavljević ◽  
Sanja Jevtić ◽  
Nevenka Rajić ◽  
...  

Research background. In the recent years, considerable attention has been given to selenium (Se) status since its deficiency is linked with various disorders and affects at least 13 % of world population. Additionally, mushrooms are known to possess pronounced capacity for absorption of various micronutrients, including Se, from soil/substrate. Here, the possibility of using Se-rich zeolite tuff as a supplement for production of selenized mushroom is investigated. Further, the impact of enrichment on the activity of antioxidant enzymes and biological potential of Coriolus versicolor medicinal mushroom is studied. Experimental approach. Se(IV)- and Se(VI)-modified natural zeolitic tuff from the Serbian deposit Zlatokop was used as substrate supplement in mushroom cultivation. To examine effectiveness of selenium enrichment, beside inductively coupled plasma mass spectrometry (ICP-MS) analysis of total selenium content, determination of antioxidant enzymes in fresh fruiting bodies as well as testing of biological potential of methanol extracts was done. Antioxidant activity was evaluated using tests pertaining to different ways of antioxidant action: inhibition of lipid peroxidation, DPPH free radical scavenging assay, ferric-reducing antioxidant power assay and chelating ability on ferrous ions. The antibacterial activity against foodborne pathogens was measured by broth microdilution assay. Additionally, chemical composition of prepared extracts was studied using UV-Vis and FTIR spectroscopy analyses. Results and conclusions. Content of selenium detected in biofortified C. versicolor was even 470 times higher compared to control ((140.7±3.8) vs (0.3±0.1) µg/g dry mass), proving that Se-rich zeolite tuff is excellent supplement for mushroom production. Further, the results of monitoring the activity of antioxidant enzymes revealed that most of the Se-enriched mushrooms exhibited higher superoxide dismutase (SOD) and catalase (CAT) and lower glutathione peroxidase (GSH-Px) activity than control. Due to elevated level of enzymes, selenated mushrooms could quickly respond to superoxide radicals, formed as a result of detachment, and thus presumably preserve quality for a longer period of time. Investigation of biological potential indicated that Se-enriched mushroom methanol extracts, generally, expressed enhanced antioxidant properties. Additionally, extracts asserted antibacterial activity against all tested pathogenic microorganisms. Novelty and scientific contribution. Cultivation of mushrooms on Se-enriched zeolite tuff is a new technological approach for obtaining Se-fortified food/supplements with enhanced antioxidant and antibacterial activity.


Sign in / Sign up

Export Citation Format

Share Document