penicillium commune
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Fadoua Bennouna ◽  
Moulay Sadiki ◽  
Soumya Elabed ◽  
Saad Ibnsouda Koraichi ◽  
Mohammed Lachkar

Despite having been used for ages to preserve wood against several effects (biological attack and moisture effects) that cause its degradation, the effect of vegetable oils on the cedar wood physicochemical properties is poorly known. Thus, in this study, the hydrophobicity, electron-acceptor (γ+), and electron-donor (γ−) properties of cedar wood before and after treatment with vegetable oils have been determined using contact angle measurement. The cedar wood has kept its hydrophobic character after treatment with the different vegetable oils. It has become more hydrophobic quantitatively with values of surface energy ranged from −25.84 to −43.45 mJ/m2 and more electron donors compared to the untreated sample. Moreover, the adhesion of four fungal strains (Penicillium commune (PDLd”), Thielavia hyalocarpa, Penicillium commune (PDLd10), and Aspergillus niger) on untreated and treated cedar wood was examined theoretically and experimentally. For untreated wood, the experimental adhesion showed a positive relationship with the results obtained by the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) approach which found that all fungal strains could adhere strongly to the cedar wood material. In contrast, this relationship was not always positive after treatment. The Environmental Scanning Electron Microscopy (ESEM) has shown that P. commune (PDLd10) and A. niger were found unable to adhere to the wood surface after treatment with sunflower and rapeseed oils. In addition, the results showed that the four fungal strains’ adhesion was decreased with olive and linseed oils treatment except that of P. commune (PDLd10) treated with linseed oil.


2021 ◽  
Vol 12 ◽  
Author(s):  
Van Thi Nguyen ◽  
Nan Hee Yu ◽  
Yookyung Lee ◽  
In Min Hwang ◽  
Hung Xuan Bui ◽  
...  

Among 200 fungal strains isolated from the soil, only one culture filtrate of Aspergillus flavus JCK-4087 showed strong nematicidal activity against Meloidogyne incognita. The nematicidal metabolite isolated from the culture filtrate of JCK-4087 was identified as cyclopiazonic acid (CPA). Because JCK-4087 also produced aflatoxins, six strains of Penicillium commune, which have been reported to be CPA producers, were obtained from the bank and then tested for their CPA productivity. CPA was isolated from the culture filtrate of P. commune KACC 45973. CPA killed the second-stage juveniles of M. incognita, M. hapla, and M. arearia with EC50–3 days 4.50, 18.82, and 60.51 μg mL–1, respectively. CPA also significantly inhibited egg hatch of M. incognita and M. hapla after a total of 28 days of treatment with the concentrations > 25 μg mL–1. The enhancement of CPA production by P. commune KACC 45973 was explored using an optimized medium based on Plackett–Burman design (PBD) and central composite design (CCD). The highest CPA production (381.48 μg mL–1) was obtained from the optimized medium, exhibiting an increase of 7.88 times when compared with that from potato dextrose broth culture. Application of the wettable power-type formulation of the ethyl acetate extract of the culture filtrate of KACC 45973 reduced gall formation and nematode populations in tomato roots and soils under greenhouse conditions. These results suggest that CPA produced by P. commune KACC 45973 can be used as either a biochemical nematicide or a lead molecule for developing chemical nematicides to control root-knot nematodes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keyvan Pakshir ◽  
Mandana Kamali ◽  
Hasti Nouraei ◽  
Kamiar Zomorodian ◽  
Marjan Motamedi ◽  
...  

AbstractOnychomycosis is a fungal disease that caused by different types of fungi. Non-dermatophyte molds are a large saprophytic fungi group that live in nature and could affect traumatic nails. The aim of this study was to identify non-dermatophyte molds causing onychomycosis and evaluation of several antifungal activities against the isolates. The samples consisted of 50 non-dermatophyte molds isolated from patients with onychomycosis confirmed by direct and culture examination fungal. DNA was extracted, amplified, and sequenced. Disk diffusion method was used to evaluate itraconazole, fluconazole, ketoconazole, terbinafine, posaconazole, and econazole activity against the isolates. The species identified as: Aspergillus flavus 22 (44%), A. niger 12 (24%), A. fumigates, 3 (6%), A. sydowii 3 (6%), A. terreus 1 (2%), Penicillium commune 2 (4%), P. glabrum 2 (4%), P. chrysogenum, 1 (2%), Fusarium solani 3 (6%) and F. thapsinum 1 (2%). Most of the samples were sensitive to terbinafine, itraconazole, and econazole and 94% of the isolates were resistant to fluconazole. This study showed that Aspergillus species were the most common cause of non-dermatophyte mold onychomycosis and fluconazole was the most resistant antifungals. Care must be taken to choose the appropriate antifungal drug for a better cure.


Author(s):  
Sachithri Munasinghe ◽  
Seneviratnege Somaratne ◽  
Shyama Weerakoon ◽  
Chandani Ranasinghe

Abstract Background The recent recovery of Gyrinops walla as a potential producer of market-quality agarwood in mature damaged woods and branches has led to the intense illicit felling and exportation of G. walla leading to the verge of extinction from Sri Lankan flora. The sustainable utilization of G. walla undoubtedly enhances the foreign exchange of the country and the non-destructive utilization through tissue culture–based techniques is the only option available for sustainable exploitation and conservation of the vulnerable species. Healthy calli and cell suspensions were chemically and biologically elicited with salicylic acid (SA) and methyl jasmonate (MJ), and the sterilized fungal homogenate (carbohydrate equivalents) of Fusariym oxysporum, Phaeocremonium parasitica, Aspergillus niger, Trichoderma viride, Penicillium commune and Lasidiplodia theobromae fungal strains, respectively. The elicited calli and cell suspensions were harvested at different time periods to extract sesquiterpenes. Results Sesquiterpenes were produced in calli under chemical elicitors with media concentrations of 10 μM SA, 100 μM SA, 10 mM MJ and 1 mM MJ and cell suspensions under 0.5 μM SA and 0.1 mM MJ. Phaeocremonium parasitica, Trichoderma viride and Lasidiplodia theobromae were more effective in the production of sesquiterpenes in G. walla callus and cell suspension by biological elicitation. Conclusion The findings of the study led to the conclusion of the possibility of induction of production of sesquiterpenes through elicitation of G. walla calli and cell suspension in an in vitro system for sustainable utilization and conservation endeavours.


2021 ◽  
Vol 9 (8) ◽  
pp. 1722
Author(s):  
Vladimir A. Myazin ◽  
Maria V. Korneykova ◽  
Alexandra A. Chaporgina ◽  
Nadezhda V. Fokina ◽  
Galina K. Vasilyeva

The effectiveness of different bioremediation methods (biostimulation, bioaugmentation, the sorption-biological method) for the restoration of soil contaminated with petroleum products in the Russian Subarctic has been studied. The object of the study includes soil contaminated for 20 years with petroleum products. By laboratory experiment, we established five types of microfungi that most intensively decompose petroleum hydrocarbons: Penicillium canescens st. 1, Penicillium simplicissimum st. 1, Penicillum commune, Penicillium ochrochloron, and Penicillium restrictum. One day after the start of the experiment, 6 to 18% of the hydrocarbons decomposed: at 3 days, this was 16 to 49%; at 7 days, 40 to 73%; and at 10 days, 71 to 87%. Penicillium commune exhibited the greatest degrading activity throughout the experiment. For soils of light granulometric composition with a low content of organic matter, a more effective method of bioremediation is sorption-biological treatment using peat or granulated activated carbon: the content of hydrocarbons decreased by an average of 65%, which is 2.5 times more effective than without treatment. The sorbent not only binds hydrocarbons and their toxic metabolites but is also a carrier for hydrocarbon-oxidizing microorganisms and prevents nutrient leaching from the soil. High efficiency was noted due to the biostimulation of the native hydrocarbon-oxidizing microfungi and bacteria by mineral fertilizers and liming. An increase in the number of microfungi, bacteria and dehydrogenase activity indicate the presence of a certain microbial potential of the soil and the ability of the hydrocarbons to produce biochemical oxidation. The use of the considered methods of bioremediation will improve the ecological state of the contaminated area and further the gradual restoration of biodiversity.


Author(s):  
Juliana Ramos-Pereira ◽  
Juliana Mareze ◽  
Domingo Fernández ◽  
Edson A. Rios ◽  
Jesús A. Santos ◽  
...  

2021 ◽  
Vol 18 ◽  
Author(s):  
Diaa T. A. Youssef ◽  
Lamiaa A. Shaala ◽  
Ameen Almohammadi ◽  
Sameh S. Elhady ◽  
Torki A. Alzughaibi ◽  
...  

: As a part of our ongoing interest to identify bioactive microbial secondary metabolites, the Red Sea tunicate-derived Penicillium commune DY004 was investigated. A new dipeptide, penicillizine A (1) together with cyclo(L-Pro-L-Phe) (2), meleagrin (3), α-cyclopiazonic acid (4), and N-(4-hydroxyphenethyl)acetamide (5) was isolated from the ethyl acetate extract of the cultures of the fungus. The structural determinations of 1-5 were supported by interpretation of their one- and two-dimensional nuclear magnetic resonance (NMR) and mass spectrometry (MS) data. In the evaluation of the compounds for their effects against three human tumorous cell lines, meleagrin (3) and α-cyclopiazonic acid (4) displayed the highest and potent activity against HeLa, U373 glioblastoma, and MDA-MB-231 cell lines down up to 3.1 µg/mL. These results suggest that marine fungi are a copious source of drug leads with therapeutic potential. Meleagrin and α-cyclopiazonic acid could be used as potential scaffolds for the development of new and more effective drug leads.


2021 ◽  
Vol 11 (2) ◽  
pp. 124-128
Author(s):  
Bianca Darck Melo Cavalcante

Os resíduos agroindustriais podem ser utilizados como substrato em processos fermentativos para obter bioprodutos de interesse comercial. Devido ao elevado volume de cascas de laranja e camarão gerados e aos seus nutrientes, o objetivo deste estudo é avaliar a viabilidade do uso desses resíduos como substrato para a fermentação submersa e produção enzimática. Foi realizada fermentação submersa com casca de laranja e camarão; Penicillium commune e um fungo isolado de uva (F-39) identificado como Aspergillus sp. foram usados separadamente para a produção dos extratos enzimáticos. Os extratos foram caracterizados quanto às atividades enzimáticas de pectinase, celulase, amilase e peroxidase. Os extratos produzidos por P. commune apresentaram maiores valores de atividades enzimáticas, especialmente celulase (16,87 U mg-1) e amilase (50,73 U mg-1) com p ≤ 0,05. Ambos os extratos apresentaram elevada atividade de peroxidase (> 90 U mg-1).  Diante dos resultados obtidos, as cascas de laranja e camarão são uma alternativa eficiente e de baixo custo para a produção enzimática.


2021 ◽  
Vol 14 (1) ◽  
pp. 171-176
Author(s):  
Maria V. Korneykova ◽  
Vladimir A. Myazin ◽  
Nadezhda V. Fokina ◽  
Alexandra A. Chaporgina

This work focuses on the creation and use of associations of hydrocarbon-oxidizing microorganisms. Bioremediation of soils with the help of mixed cultural and associations of microorganisms provides wider adaptive possibilities than individual species. This is especially important in conditions of short northern summer. The results of field experiments showed that microbial associations based on indigenous microorganisms (bacteria Pseudomonas fluorescens, P. putida, P. baetica, Microbacterium paraoxydans and fungi Penicillium commune, P. canescens st. 1, P. simplicissimum st. 1) with mineral fertilizers reduced the content of total petroleum hydrocarbons in the Hortic Arthrosol soil of the Kola Peninsula by 82% over 120 days. Also, the microbial associations with mineral fertilizers had a positive effect on the physical properties of the soil, increasing its humidity. The bacterial-fungi associations changed the number, abundance and structure of the indigenous community of microorganisms. Penicillium canescens, which was included in the composition of fungi association, became dominant. During the rapid decomposition of hydrocarbons are released to the soil toxic intermediates or metabolites of the microbial oxidation of hydrocarbons. Hydrocarbon oxidizing microfungi suppressed the germination of test plant seeds to one degree or another. Penicillium commune fungal metabolites inhibited seed germination only by 29% for Lepidium sativum L. and 24% for Triticum aestivum L. This species can be used for bioremediation of petroleum contaminated soils.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 140 ◽  
Author(s):  
Ahmed Mohamed Aly Khalil ◽  
Saad El-Din Hassan ◽  
Sultan M. Alsharif ◽  
Ahmed M. Eid ◽  
Emad El-Din Ewais ◽  
...  

Endophytic fungi are widely present in internal plant tissues and provide different benefits to their host. Medicinal plants have unexplored diversity of functional fungal association; therefore, this study aimed to isolate endophytic fungi associated with leaves of medicinal plants Ephedra pachyclada and evaluate their plant growth-promoting properties. Fifteen isolated fungal endophytes belonging to Ascomycota, with three different genera, Penicillium, Alternaria, and Aspergillus, were obtained from healthy leaves of E. pachyclada. These fungal endophytes have varied antimicrobial activity against human pathogenic microbes and produce ammonia and indole acetic acid (IAA), in addition to their enzymatic activity. The results showed that Penicillium commune EP-5 had a maximum IAA productivity of 192.1 ± 4.04 µg mL−1 in the presence of 5 µg mL−1 tryptophan. The fungal isolates of Penicillium crustosum EP-2, Penicillium chrysogenum EP-3, and Aspergillus flavus EP-14 exhibited variable efficiency for solubilizing phosphate salts. Five representative fungal endophytes of Penicillium crustosum EP-2, Penicillium commune EP-5, Penicillium caseifulvum EP-11, Alternaria tenuissima EP-13, and Aspergillus flavus EP-14 and their consortium were selected and applied as bioinoculant to maize plants. The results showed that Penicillium commune EP-5 increased root lengths from 15.8 ± 0.8 to 22.1 ± 0.6. Moreover, the vegetative growth features of inoculated maize plants improved more than the uninoculated ones.


Sign in / Sign up

Export Citation Format

Share Document