scholarly journals Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere

PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88178 ◽  
Author(s):  
Miaogen Shen ◽  
Yanhong Tang ◽  
Jin Chen ◽  
Xi Yang ◽  
Cong Wang ◽  
...  
2021 ◽  
Vol 310 ◽  
pp. 108630
Author(s):  
Zhaoqi Zeng ◽  
Wenxiang Wu ◽  
Quansheng Ge ◽  
Zhaolei Li ◽  
Xiaoyue Wang ◽  
...  

2017 ◽  
Vol 23 (12) ◽  
pp. 5189-5202 ◽  
Author(s):  
Sabine Güsewell ◽  
Reinhard Furrer ◽  
Regula Gehrig ◽  
Barbara Pietragalla

2016 ◽  
Vol 22 (11) ◽  
pp. 3702-3711 ◽  
Author(s):  
Qiang Liu ◽  
Yongshuo H. Fu ◽  
Zaichun Zhu ◽  
Yongwen Liu ◽  
Zhuo Liu ◽  
...  

2017 ◽  
Vol 44 (12) ◽  
pp. 6173-6181 ◽  
Author(s):  
Xiuchen Wu ◽  
Hongyan Liu ◽  
Xiaoyan Li ◽  
Shilong Piao ◽  
Philippe Ciais ◽  
...  

2016 ◽  
Vol 7 (3) ◽  
pp. 717-734 ◽  
Author(s):  
Alemu Gonsamo ◽  
Jing M. Chen ◽  
Drew T. Shindell ◽  
Gregory P. Asner

Abstract. A lack of long-term measurements across Earth's biological and physical systems has made observation-based detection and attribution of climate change impacts to anthropogenic forcing and natural variability difficult. Here we explore coherence among land, cryosphere and ocean responses to recent climate change using 3 decades (1980–2012) of observational satellite and field data throughout the Northern Hemisphere. Our results show coherent interannual variability among snow cover, spring phenology, solar radiation, Scandinavian Pattern, and North Atlantic Oscillation. The interannual variability of the atmospheric peak-to-trough CO2 amplitude is mostly impacted by temperature-mediated effects of El Niño/Southern Oscillation (ENSO) and Pacific/North American Pattern (PNA), whereas CO2 concentration is affected by Polar Pattern control on sea ice extent dynamics. This is assuming the trend in anthropogenic CO2 emission remains constant, or the interannual changes in the trends are negligible. Our analysis suggests that sea ice decline-related CO2 release may outweigh increased CO2 uptake through longer growing seasons and higher temperatures. The direct effects of variation in solar radiation and leading teleconnections, at least in part via their impacts on temperature, dominate the interannual variability of land, cryosphere and ocean indicators. Our results reveal a coherent long-term changes in multiple physical and biological systems that are consistent with anthropogenic forcing of Earth's climate and inconsistent with natural drivers.


2017 ◽  
Vol 21 (8) ◽  
pp. 1-23 ◽  
Author(s):  
Soumaya Belmecheri ◽  
Flurin Babst ◽  
Amy R. Hudson ◽  
Julio Betancourt ◽  
Valerie Trouet

Abstract The latitudinal position of the Northern Hemisphere jet stream (NHJ) modulates the occurrence and frequency of extreme weather events. Precipitation anomalies in particular are associated with NHJ variability; the resulting floods and droughts can have considerable societal and economic impacts. This study develops a new climatology of the 300-hPa NHJ using a bottom-up approach based on seasonally explicit latitudinal NHJ positions. Four seasons with coherent NHJ patterns were identified (January–February, April–May, July–August, and October–November), along with 32 longitudinal sectors where the seasonal NHJ shows strong spatial coherence. These 32 longitudinal sectors were then used as NHJ position indices to examine the influence of seasonal NHJ position on the geographical distribution of NH precipitation and temperature variability and their link to atmospheric circulation pattern. The analyses show that the NHJ indices are related to broad-scale patterns in temperature and precipitation variability, in terrestrial vegetation productivity and spring phenology, and can be used as diagnostic/prognostic tools to link ecosystem and socioeconomic dynamics to upper-level atmospheric patterns.


2016 ◽  
Author(s):  
A. Gonsamo ◽  
J. M. Chen ◽  
D. T. Shindell ◽  
G. P. Asner

Abstract. A lack of long-term measurements across Earth's biological and physical systems has made observation-based detection and attribution of climate change impacts to anthropogenic forcing and natural variability difficult. Here we explore coherence among land, cryosphere and ocean responses to recent climate change using three decades (1980−2012) of observational satellite and field data throughout the Northern Hemisphere. Our results show coherent interannual variability among snow cover, spring phenology and thaw, solar radiation, Scandinavian Pattern, and North Atlantic Oscillation. The interannual variability of the atmospheric peak-to-trough CO2 amplitude is mostly impacted by temperature-mediated effects of ENSO, North American Pattern and East Atlantic Pattern, whereas CO2 concentration is affected by Polar Pattern control on sea ice extent dynamics. This is assuming the trend in anthropogenic CO2 emission remains constant, or the interannual changes in the trends are negligible. Our analysis suggests that sea ice decline-related CO2 release may outweigh increased CO2 uptake through longer growing seasons and higher temperatures. The direct effects of variation in solar radiation and leading teleconnections, at least in part via their impacts on temperature, dominate the interannual variability of land, cryosphere and ocean indicators. Our results reveal a coherent long-term changes in multiple physical and biological systems that are consistent with anthropogenic forcing of Earth's climate and inconsistent with natural drivers.


Sign in / Sign up

Export Citation Format

Share Document