scholarly journals Development and Characterization of Recombinant Antibody Fragments That Recognize and Neutralize In Vitro Stx2 Toxin from Shiga Toxin-Producing Escherichia coli

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0120481 ◽  
Author(s):  
Daniela Luz ◽  
Gang Chen ◽  
Andrea Q. Maranhão ◽  
Leticia B. Rocha ◽  
Sachdev Sidhu ◽  
...  
2000 ◽  
Vol 267 (23) ◽  
pp. 6775-6783 ◽  
Author(s):  
Dominique Eeckhout ◽  
Esbjörn Fiers ◽  
Rebecca Sienaert ◽  
Veerle Snoeck ◽  
Ann Depicker ◽  
...  

2021 ◽  
Vol 9 (11) ◽  
pp. 2374
Author(s):  
Xiangning Bai ◽  
Flemming Scheutz ◽  
Henrik Mellström Dahlgren ◽  
Ingela Hedenström ◽  
Cecilia Jernberg

Shiga toxin (Stx) is the key virulence factor in the Shiga Toxin-Producing Escherichia coli (STEC), which can cause diarrhea and hemorrhagic colitis with potential life-threatening complications. There are two major types of Stx: Stx1 and Stx2. Several Stx1/Stx2 subtypes have been identified in E. coli, varying in sequences, toxicity and host specificity. Here, we report a novel Stx2 subtype (designated Stx2m) from three clinical E. coli strains isolated from diarrheal patients and asymptomatic carriers in Sweden and Denmark. The Stx2m toxin was functional and exhibited cytotoxicity in vitro. The two Swedish Stx2m-producing strains belonged to the same serotype O148:H39 and Multilocus Sequencing Typing (MLST) Sequence Type (ST) 5825, while the Danish strain belonged to the O96:H19 serotype and ST99 type. Whole-genome sequencing (WGS) data analysis revealed that the three Stx2m-producing strains harbored additional virulence genes and the macrolide resistance gene mdf (A). Our findings expand the pool of Stx2 subtypes and highlight the clinical significance of emerging STEC variants. Given the clinical relevance of the Stx2m-producing strains, we propose to include Stx2m in epidemiological surveillance of STEC infections and clinical diagnosis.


BioTechniques ◽  
2021 ◽  
Author(s):  
Yoshiro Hanyu ◽  
Mieko Kato

High-yield expression of quality antibody fragments is indispensable for research and diagnosis. Most recombinant antibody fragments are expressed in Escherichia coli using liquid cultures; however, their yields and quality are often poor. Here the authors expressed a single-chain variable fragment in E. coli cultivated on the wet surface of a solid support. Compared with a liquid culture, the authors obtained 2.5-times more single-chain variable fragments with membrane-cultivated E. coli. This method has two important advantages: it enables high yields of periplasmic single-chain variable fragments compared with liquid culture and offers simple and rapid expression and extraction.


Sign in / Sign up

Export Citation Format

Share Document