scholarly journals Protist Community Grazing on Prokaryotic Prey in Deep Ocean Water Masses

PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0124505 ◽  
Author(s):  
Emma Rocke ◽  
Maria G. Pachiadaki ◽  
Alec Cobban ◽  
Elizabeth B. Kujawinski ◽  
Virginia P. Edgcomb
2016 ◽  
Author(s):  
Marlene Klockmann ◽  
Uwe Mikolajewicz ◽  
Jochem Marotzke

Abstract. Simulations with the Max Planck Institute Earth System Model (MPI-ESM) are used to study the sensitivity of the AMOC and the deep ocean water masses during the Last Glacial Maximum to different sets of forcings. Analysing the individual contributions of the glacial forcings reveals that the ice sheets cause an increase of the overturning strength and a deepening of the North Atlantic Deep Water (NADW) cell, while the low greenhouse gas (GHG) concentrations cause the overturning strength to decrease and the NADW cell to shoal. The effect of the orbital configuration is negligible. The effects of the ice sheets and the GHG reduction balance each other in the deep ocean so that no shoaling of the NADW cell is simulated in the full glacial state. Experiments in which different GHG concentrations with linearly decreasing radiative forcing are applied to a setup with glacial ice sheets and orbital configuration show that GHG concentrations below the glacial level are necessary to cause a shoaling of the NADW cell with respect to the preindustrial state in MPI-ESM. For a pCO2 of 149 ppm, the simulated overturning state and the deep ocean water masses are in best agreement with the glacial state inferred from proxy data. Sensitivity studies confirm that brine release and shelf convection in the Southern Ocean are key processes for the shoaling of the NADW cell. Shoaling occurs only when Southern Ocean shelf water contributes significantly to the formation of Antarctic Bottom Water.


2016 ◽  
Vol 12 (9) ◽  
pp. 1829-1846 ◽  
Author(s):  
Marlene Klockmann ◽  
Uwe Mikolajewicz ◽  
Jochem Marotzke

Abstract. Simulations with the Max Planck Institute Earth System Model (MPI-ESM) are used to study the sensitivity of the AMOC and the deep-ocean water masses during the Last Glacial Maximum to different sets of forcings. Analysing the individual contributions of the glacial forcings reveals that the ice sheets cause an increase in the overturning strength and a deepening of the North Atlantic Deep Water (NADW) cell, while the low greenhouse gas (GHG) concentrations cause a decrease in overturning strength and a shoaling of the NADW cell. The effect of the orbital configuration is negligible. The effects of the ice sheets and the GHG reduction balance each other in the deep ocean so that no shoaling of the NADW cell is simulated in the full glacial state. Experiments in which different GHG concentrations with linearly decreasing radiative forcing are applied to a setup with glacial ice sheets and orbital configuration show that GHG concentrations below the glacial level are necessary to cause a shoaling of the NADW cell with respect to the pre-industrial state in MPI-ESM. For a pCO2 of 149 ppm, the simulated overturning state and the deep-ocean water masses are in best agreement with the glacial state inferred from proxy data. Sensitivity studies confirm that brine release and shelf convection in the Southern Ocean are key processes for the shoaling of the NADW cell. Shoaling occurs only when Southern Ocean shelf water contributes significantly to the formation of Antarctic Bottom Water.


2020 ◽  
Author(s):  
Alice Marzocchi ◽  
Malte Jansen

<p>Palaeo-oceanographic reconstructions indicate that the distribution of global ocean water masses has undergone major glacial–interglacial rearrangements over the past ~2.5 million years. Given that the ocean is the largest carbon reservoir, such circulation changes were probably key in driving the variations in atmospheric CO<sub>2</sub> concentrations observed in the ice-core record. However, we still lack a mechanistic understanding of the ocean’s role in regulating CO<sub>2</sub> on these timescales. Here, we show that glacial ocean–sea ice numerical simulations with a single-basin general circulation model, forced solely by atmospheric cooling, can predict ocean circulation patterns associated with increased atmospheric carbon sequestration in the deep ocean. Under such conditions, Antarctic bottom water becomes more isolated from the sea surface as a result of two connected factors: reduced air–sea gas exchange under sea ice around Antarctica and weaker mixing with North Atlantic Deep Water due to a shallower interface between southern- and northern-sourced water masses. These physical changes alone are sufficient to explain ~40 ppm atmospheric CO<sub>2</sub> drawdown—about half of the glacial–interglacial variation. Our results highlight that atmospheric cooling could have directly caused the reorganization of deep ocean water masses and, thus, glacial CO<sub>2</sub> drawdown. This provides an important step towards a consistent picture of glacial climates.</p>


Marine Drugs ◽  
2016 ◽  
Vol 14 (6) ◽  
pp. 106 ◽  
Author(s):  
Tzu-Ying Lung ◽  
Li-Ya Liao ◽  
Jyh-Jye Wang ◽  
Bai-Luh Wei ◽  
Ping-Yi Huang ◽  
...  

2007 ◽  
Vol 40 (3) ◽  
pp. 113-116 ◽  
Author(s):  
Seung-Won Lee ◽  
Hyeon-Joo Kim ◽  
Deok-Soo Moon ◽  
Ah-Ree Kim ◽  
In-Hak Jeong

2004 ◽  
Vol 89 (516) ◽  
pp. 437-440 ◽  
Author(s):  
Maurice N. Brearley

A tsunami usually starts on deep ocean water as a result of a submarine earthquake. A tsunami wave is very long, even as much as tens of kilometres, but of only very small amplitude, typically less than half a metre (Bascom [1]). In mid-ocean, the passage of a tsunami is imperceptible, but on reaching a shore it can achieve great heights and can deliver massive surges of water. Before the arrival of the first surge, and between subsequent surges, the water at a shore line usually retracts for a long distance, leaving bare large areas of ocean floor that are normally under water. This paper analyses the behaviour of a tsunami, and explains how its mid-ocean character is transformed to produce such massive surges of water at a shore line.


2020 ◽  
Vol 44 (7) ◽  
Author(s):  
Pei‐Chen Chen ◽  
Yi‐Chen Lee ◽  
Hsing‐Yu Jao ◽  
Chi‐Ping Wang ◽  
Anthony Jacobs ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 511
Author(s):  
Liang Yue ◽  
Veerle Vandeginste

The Neoproterozoic era is a time of major environmental change in Earth history. The Ediacaran period (635–541 Ma), the uppermost division of Precambrian time, is characterized by the remarkable Shuram excursion (largest C isotope negative excursion), a deep ocean water oxidation event, and Ediacaran biota. The Nafun Group of Oman provides a well-preserved and mostly continuous section of an Ediacaran succession. Based on geochemical data from the Nafun Group, the Shuram excursion (SE) and deep ocean oxidation hypotheses were proposed. Now, we sampled this section at high stratigraphic resolution, and present here the petrographical and geochemical analysis of the Khufai, Shuram and Buah Formations. The major and trace element analysis of shales from the Shuram Formation indicates that northern Oman was an active continental margin environment in Neoproterozoic times. The provenance of the Shuram Formation was primarily mafic and intermediate igneous rocks. With the unsteady tectonic setting, the development of the Nafun Group was influenced by hydrothermal supply and volcaniclastic input. Based on the V/Cr and U/Th ratio of the samples from the Nafun Group, our study reveals the transition of the ocean water redox environment, which is connected to the rise and fall of the Ediacaran biota. Our study constrains the tectonic setting of northern Oman and the petrography and geochemical data from the Nafun Group for the hydrothermal and volcaniclastic supply. Thus, our study acknowledges more factors for the explanation of the Ediacaran conundrums.


Sign in / Sign up

Export Citation Format

Share Document