scholarly journals Grey and White Matter Magnetisation Transfer Ratio Measurements in the Lumbosacral Enlargement: A Pilot In Vivo Study at 3T

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0134495 ◽  
Author(s):  
Chinyere O. Ugorji ◽  
Rebecca S. Samson ◽  
Martina D. Liechti ◽  
Jalesh N. Panicker ◽  
David H. Miller ◽  
...  
2014 ◽  
Vol 20 (10) ◽  
pp. 1322-1330 ◽  
Author(s):  
Rebecca S Samson ◽  
Manuel J Cardoso ◽  
Nils Muhlert ◽  
Varun Sethi ◽  
Claudia AM Wheeler-Kingshott ◽  
...  

Background: Pathological abnormalities including demyelination and neuronal loss are reported in the outer cortex in multiple sclerosis (MS). Objective: We investigated for in vivo evidence of outer cortical abnormalities by measuring the magnetisation transfer ratio (MTR) in MS patients of different subgroups. Methods: Forty-four relapsing–remitting (RR) (mean age 41.9 years, median Expanded Disability Status Scale (EDSS) 2.0), 25 secondary progressive (SP) (54.1 years, EDSS 6.5) and 19 primary progressive (PP) (53.1 years, EDSS 6.0) MS patients and 35 healthy control subjects (mean age 39.2 years) were studied. Three-dimensional (3D) 1×1×1mm3 T1-weighted images and MTR data were acquired. The cortex was segmented, then subdivided into outer and inner bands, and MTR values were calculated for each band. Results: In a pairwise analysis, mean outer cortical MTR was lower than mean inner cortical MTR in all MS groups and controls ( p<0.001). Compared with controls, outer cortical MTR was decreased in SPMS ( p<0.001) and RRMS ( p<0.01), but not PPMS. Outer cortical MTR was lower in SPMS than PPMS ( p<0.01) and RRMS ( p<0.01). Conclusions: Lower outer than inner cortical MTR in healthy controls may reflect differences in myelin content. The lowest outer cortical MTR was seen in SPMS and is consistent with more extensive outer cortical (including subpial) pathology, such as demyelination and neuronal loss, as observed in post-mortem studies of SPMS patients.


2019 ◽  
Vol 26 (9) ◽  
pp. 1093-1101
Author(s):  
J William L Brown ◽  
Ferran Prados Carrasco ◽  
Arman Eshaghi ◽  
Carole H Sudre ◽  
Tom Button ◽  
...  

Background: In multiple sclerosis (MS), disease effects on magnetisation transfer ratio (MTR) increase towards the ventricles. This periventricular gradient is evident shortly after first symptoms and is independent of white matter lesions. Objective: To explore if alemtuzumab, a peripherally acting disease-modifying treatment, modifies the gradient’s evolution, and whether baseline gradients predict on-treatment relapses. Methods: Thirty-four people with relapsing-remitting MS underwent annual magnetic resonance imaging (MRI) scanning (19 receiving alemtuzumab (four scans each), 15 untreated (three scans each)). The normal-appearing white matter was segmented into concentric bands. Gradients were measured over the three bands nearest the ventricles. Mixed-effects models adjusted for age, gender, relapse rate, lesion number and brain parenchymal fraction compared the groups’ baseline gradients and evolution. Results: Untreated, the mean MTR gradient increased (+0.030 pu/band/year) but decreased following alemtuzumab (−0.045 pu/band/year, p = 0.037). Within the alemtuzumab group, there were no significant differences in baseline lesion number ( p = 0.568) nor brain parenchymal fraction ( p = 0.187) between those who relapsed within 4 years ( n = 4) and those who did not ( n = 15). However, the baseline gradient was significantly different ( p = 0.020). Conclusion: Untreated, abnormal periventricular gradients worsen with time, but appear reversible with peripheral immunotherapy. Baseline gradients – but not lesion loads or brain volumes – may predict on-treatment relapses. Larger confirmatory studies are required.


2013 ◽  
Vol 20 (2) ◽  
pp. 227-233 ◽  
Author(s):  
Niraj Mistry ◽  
Rasha Abdel-Fahim ◽  
Olivier Mougin ◽  
Christopher Tench ◽  
Penny Gowland ◽  
...  

Background:Degeneration of central nervous system normal appearing white matter (NAWM) underlies disability and progression in multiple sclerosis (MS). Axon loss typifies NAWM degeneration.Objective:The objective of this paper is to assess correlation between cortical lesion load and magnetisation transfer ratio (MTR) of the NAWM in MS. This was in order to test the hypothesis that cortical lesions cause NAWM degeneration.Methods:Nineteen patients with MS underwent 7 Tesla magnetisation-prepared-rapid-acquisition-gradient-echo (MPRAGE), and magnetisation transfer ratio (MTR) brain magnetic resonance imaging (MRI). Cortical lesions were identified using MPRAGE and MTR images of cortical ribbons. White matter lesions (WMLs) were segmented using MPRAGE images. WML maps were subtracted from white matter volumes to produce NAWM masks. Pearson correlation was calculated for NAWM MTR vs cortical lesion load, and WML volumes.Results:Cortical lesion volumes and counts all had significant correlation with NAWM mean MTR. The strongest correlation was with cortical lesion volumes obtained using MTR images ( r = −0.6874, p = 0.0006). WML volume had no significant correlation with NAWM mean MTR ( r = −0.08706, p = 0.3615).Conclusion:Our findings are consistent with the hypothesis that cortical lesions cause NAWM degeneration. This implicates cortical lesions in the pathogenesis of NAWM axon loss, which underpins long-term disability and progression in MS.


Sign in / Sign up

Export Citation Format

Share Document