brain volumes
Recently Published Documents


TOTAL DOCUMENTS

937
(FIVE YEARS 382)

H-INDEX

62
(FIVE YEARS 9)

Author(s):  
Rodrigo Gutierrez-Quintana ◽  
David J Walker ◽  
Kaye J Williams ◽  
Duncan M Forster ◽  
Anthony J Chalmers

Abstract Radiotherapy (RT) plays a fundamental role in the treatment of glioblastoma (GBM). GBM are notoriously invasive and harbour a subpopulation of cells with stem-like features which exhibit upregulation of the DNA damage response and are radioresistant. High radiation doses are therefore delivered to large brain volumes and are known to extend survival but also cause delayed toxicity with 50-90% of patients developing neurocognitive dysfunction. Emerging evidence identifies neuroinflammation as a critical mediator of the adverse effects of RT on cognitive function. In addition to its well-established role in promoting repair of radiation induced DNA damage, activation of poly(ADP-ribose) polymerase (PARP) can exacerbate neuroinflammation by promoting secretion of inflammatory mediators. Therefore, PARP represents an intriguing mechanistic link between radiation-induced activation of the DNA damage response and subsequent neuroinflammation. PARP inhibitors have emerged as promising new agents for GBM when given in combination with RT, with multiple preclinical studies demonstrating radiosensitizing effects and at least three compounds being evaluated in clinical trials. We propose that concomitant use of PARP inhibitors could reduce radiation-induced neuroinflammation and reduce the severity of radiation-induced cognitive dysfunction while at the same time improving tumour control by enhancing radiosensitivity.


2022 ◽  
Author(s):  
Eero Silver ◽  
Elmo P. Pulli ◽  
Eeva-Leena Kataja ◽  
Venla Kumpulainen ◽  
Anni Copeland ◽  
...  

Abstract The human brain develops dynamically during early childhood, when the child is sensitive to both genetic programming and extrinsic exposures. Recent studies have found links between prenatal and early life environmental factors, family demographics and the cortical brain morphology in newborns measured by surface area, volume and thickness. Here in this magnetic resonance imaging study, we evaluated whether a similar set of variables associates with cortical surface area and volumes measured in a sample of 170 healthy 5-year-olds from the FinnBrain Birth Cohort Study. We found that child sex, maternal pre-pregnancy body mass index, 5min APGAR score, neonatal intensive care admission and maternal smoking during pregnancy associated with surface areas. Furthermore, child sex, maternal age and maternal level of education associated with brain volumes. Expectedly, many variables deemed important for neonatal brain anatomy (such as birth weight and gestational age at birth) in earlier studies did not associate with brain metrics in our study group of 5-year-olds, which implies that their effects on brain anatomy are age-specific. Future research may benefit from including pre- and perinatal covariates in the analyses when such data are available. Finally, we provide evidence for right lateralization for surface area and volumes except for the temporal lobes. These subtle differences between hemispheres are variable across individuals and may be interesting brain metrics in future studies.


2022 ◽  
Vol 8 (1) ◽  
pp. 205521732110707
Author(s):  
Satori Ajitomi ◽  
Juichi Fujimori ◽  
Ichiro Nakashima

Background Two-dimensional (2D) measures have been proposed as potential proxies for whole-brain volume in multiple sclerosis (MS). Objective To verify whether 2D measurements by routine MRI are useful in predicting brain volume or disability in MS. Methods In this cross-sectional analysis, eighty-five consecutive Japanese MS patients—relapsing-remitting MS (81%) and progressive MS (19%)—underwent 1.5 Tesla T1-weighted 3D MRI examinations to measure whole-brain and grey matter volume. 2D measurements, namely, third ventricle width, lateral ventricle width (LVW), brain width, bicaudate ratio, and corpus callosum index (CCI), were obtained from each scan. Correlations between 2D measurements and 3D measurements, the Expanded Disability Status Scale (EDSS), or processing speed were analysed. Results The third and lateral ventricle widths were well-correlated with the whole-brain volume ( p < 0.0001), grey matter volume ( p < 0.0001), and EDSS scores ( p = 0.0001, p = .0004, respectively).The least squares regression model revealed that 78% of the variation in whole-brain volume could be explained using five explanatory variables, namely, LVW, CCI, age, sex, and disease duration. By contrast, the partial correlation coefficient excluding the effect of age showed that the CCI was significantly correlated with the EDSS and processing speed ( p < 0.0001). Conclusion Ventricle width correlated well with brain volumes, while the CCI correlated well with age-independent (i.e. disease-induced) disability.


2022 ◽  
Vol 8 (1) ◽  
pp. 205521732110693
Author(s):  
Hrishikesh Lokhande ◽  
Mattia Rosso ◽  
Shahamat Tauhid ◽  
Renxin Chu ◽  
Brian C. Healy ◽  
...  

Background Serum neurofilament light chain (sNfL) levels are associated with relapses, MRI lesions, and brain volume in multiple sclerosis (MS). Objective To explore the value of early serum neurofilament light (sNfL) measures in prognosticating 10-year regional brain volumes in MS. Methods Patients with MS enrolled in the Comprehensive Longitudinal Investigations in MS at Brigham and Women's Hospital (CLIMB) study within five years of disease onset who had annual blood samples from years 1–10 (n = 91) were studied. sNfL was measured with a single molecule array (SIMOA) assay. We quantified global cortical thickness and normalized deep gray matter (DGM) volumes (fractions of the thalamus, caudate, putamen, and globus pallidus) from high-resolution 3 T MRI at 10 years. Correlations between yearly sNfL levels and 10-year MRI outcomes were assessed using linear regression models. Results sNfL levels from years 1 and 2 were associated with 10-year thalamus fraction. Early sNfL levels were not associated with 10-year putamen, globus pallidus or caudate fractions. At 10 years, cortical thickness was not associated with early sNfL levels, but was weakly correlated with total DGM fraction. Conclusions Early sNfL levels correlate with 10-year thalamic volume, supporting its role as a prognostic biomarker in MS.


Neurology ◽  
2021 ◽  
Vol 98 (1 Supplement 1) ◽  
pp. S20.1-S20
Author(s):  
Barry Bryant ◽  
Bharat Narapareddy ◽  
Michael Johnathan Char Bray ◽  
Lisa N. Richey ◽  
Akshay D. Krieg ◽  
...  

ObjectiveThe objective of this study was to determine whether individuals who began fighting competitively at a younger age experienced adverse brain health outcomes compared to fighters who began competing at an older age.BackgroundEstablished literature has made clear that fighting sports such as boxing and mixed martial arts can lead to head injury. Prior work from this group on the Professional Fighters Brain Health Study (PFBHS) found that exposure to repetitive head impacts is associated with lower brain volumes and decreased processing speed in fighters.Design/MethodsAs part of the PFBHS, current and previously licensed professional fighters were recruited, divided into active and retired cohorts, and matched with a control group that had no prior experience in sports with likely head trauma. This present study examined the relationship between age of first exposure (AFE) to fighting sports and brain structure (MRI regional volume), cognitive performance (CNS Vital Signs, iComet C3), and clinical neuropsychiatric symptoms (PHQ-9, Barratt Impulsiveness Scale).ResultsBrain MRI data showed significant correlations between earlier AFE and smaller bilateral hippocampal and posterior corpus callosum volumes for both retired and active fighters. Earlier AFE in active fighters was correlated with decreased processing speed and decreased psychomotor speed. Retired fighters showed a correlation between earlier AFE and higher measures of depression and impulsivity.ConclusionsThe findings of this study help to inform clinicians, governing bodies, parents, and athletes of the risks associated with beginning to compete in fighting sports at a young age.


2021 ◽  
Author(s):  
Regina L Triplett ◽  
Rachel E Lean ◽  
Amisha Parikh ◽  
J Philip Miller ◽  
Dimitrios Alexopoulos ◽  
...  

Importance: Exposure to early life adversity alters the structural development of key brain regions underlying neurodevelopmental impairments. The extent that prenatal exposure to life adversity alters structure at birth remains poorly understood. Objective: To determine if prenatal exposure to maternal social advantage and psychosocial distress alters global and regional brain volumes and cortical folding in the first weeks of life. Design: A prospective, longitudinal study of sociodemographically-diverse mothers recruited in the first trimester of pregnancy and their infants who underwent brain magnetic resonance imaging scan in the first weeks of life. Setting: Mothers were recruited from local obstetric clinics from 2017-2020. Participants: Of 399 mother-infant dyads prospectively recruited into the parent study, 280 healthy, term-born infants (47% female, mean postmenstrual age at scan 42 weeks) were eligible for inclusion. Exposures: Maternal social advantage and psychosocial distress in pregnancy. Main Measures and Outcomes: Two measures of latent constructs were created using Confirmatory Factor Analyses spanning Maternal Social Advantage (Income to Needs ratio, Area Deprivation Index, Healthy Eating Index, education level, insurance status) and Psychosocial Stress (Perceived Stress Scale, Edinburgh Postnatal Depression Scale, Everyday Discrimination Scale, Stress and Adversity Inventory). Neonatal cortical and subcortical gray matter, white matter, cerebellar, hippocampus, and amygdala volumes were generated using semi-automated age-specific segmentation pipelines. Results: After covariate adjustment and multiple comparisons correction, greater social disadvantage (i.e., lower Advantage values) was associated with reduced cortical gray matter (p=.03), subcortical gray matter (p=.008), and white matter (p=.004) volumes and cortical folding (p=.001). Psychosocial Stress was not related to neonatal brain metrics. While social disadvantage was associated with smaller absolute volumes of the bilateral hippocampi and amygdalae, after correcting for total brain volume, there were no regional effects. Conclusions and Relevance: Prenatal exposure to social disadvantage is associated with global reductions in brain volumes and cortical folding at birth. No regional specificity for the hippocampus or amygdala was detected. Results highlight that the deleterious effects of poverty begin in utero and are evident in the first weeks of life. These findings emphasize that preventative interventions to support fetal brain development should address socioeconomic hardships for expectant parents.


2021 ◽  
pp. 1-10
Author(s):  
Emer R. McGrath ◽  
Jayandra J. Himali ◽  
Daniel Levy ◽  
Qiong Yang ◽  
Charles S. DeCarli ◽  
...  

Background: Epidermal growth factor containing fibulin extracellular matrix protein-1 (EFEMP1) has been associated with increased white matter hyperintensities (WMH) burden and disorders of premature aging and may have a shared pathophysiological role in the development of WMH and dementia. Objective: To determine the association between plasma EFEMP1 levels and MRI markers of vascular brain injury and incident all-cause and Alzheimer’s disease (AD) dementia. Methods: We measured plasma EFEMP1 levels in 1597 [53% women, mean age 68.7 (SD 5.7) years] dementia-free Framingham Offspring cohort participants between 1998–2001 and subsequently followed them for incident dementia. Secondary outcomes included stroke, structural MRI brain measures and neurocognitive test performance. Results: During a median 11.8 [Q1, Q3 : 7.1, 13.3] year follow-up, 131 participants developed dementia. The highest quintile of plasma EFEMP1, compared to the bottom four quintiles, was associated with an increased risk of time to incident all-cause dementia (HR 1.77, 95% CI 1.18–2.64) and AD dementia (HR 1.76, 95% CI 1.11–2.81) but not with markers of vascular brain injury (WMH, covert brain infarcts or stroke). Higher circulating EFEMP1 concentrations were also cross-sectionally associated with lower total brain (β±SE, –0.28±0.11, p = 0.01) and hippocampal volumes (–0.006±0.003, p = 0.04) and impaired abstract reasoning (Similarities test, –0.18±0.08, p = 0.018 per standard deviation increment in EFEMP1). Conclusion: Elevated circulating EFEMP1 is associated with an increased risk of all-cause and AD dementia, smaller hippocampal and total brain volumes, and poorer cognitive performance. EFEMP1 may play an important biological role in the development of AD dementia. Further studies to validate these findings are warranted.


Author(s):  
Kyung Ah Woo ◽  
Joo Young Shin ◽  
Heejung Kim ◽  
Jeeyun Ahn ◽  
Beomseok Jeon ◽  
...  

Abstract Objectives To investigate peripapillary retinal nerve fiber layer (pRNFL) changes in patients with progressive supranuclear palsy (PSP). Methods We included 21 PSP patients (36 eyes) who underwent peripapillary optical coherence tomography (OCT) scans at 2.5 ± 1.3 years of disease, without ophthalmologic co-morbidities. We compared pRNFL thicknesses in PSP eyes with age-matched 22 controls (22 eyes) using generalized estimating equation model adjusting for intra-subject inter-eye correlations, age and sex. We also analyzed the correlation between the pRNFL thickness and clinical severity using Spearman’s correlation. In twelve PSP patients with 3 T brain MRI volumetric scan within 1 year of OCT exam, we investigated the correlation between the pRNFL thickness and brain atrophy using Pearson’s correlation. Results PSP patients had global pRNFL thinning compared to controls (beta = − 6.436, p = 0.025). Global pRNFL thickness correlated with Hoehn & Yahr stages (r = − 0.487, p = 0.025), and nasal pRNFL thinning showed a trend of correlation (uncorrected p < 0.05). Exploratory correlation analysis between global pRNFL thickness and nonmotor items in the PSP rating scale showed a trend toward association with sleep disturbances (uncorrected p = 0.008) and urinary incontinence (uncorrected p = 0.031), although not significant after Bonferroni correction (all 28 items). The patients had significant atrophy in the posterior cingulate cortex, third ventricle, pallidum, and midbrain with reduced midbrain-to-pons ratio, but no correlation was found between pRNFL thickness and brain volumes. Conclusion The pRNFL seems to be affected in PSP, which is more severe with advanced disease stages. Retinal investigation in a larger longitudinal cohort would help elucidate the pathophysiological role of retinal thinning in PSP.


Sign in / Sign up

Export Citation Format

Share Document