scholarly journals Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species

PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0148280 ◽  
Author(s):  
Alan W. Bowsher ◽  
Rifhat Ali ◽  
Scott A. Harding ◽  
Chung-Jui Tsai ◽  
Lisa A. Donovan
Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 357
Author(s):  
Muhammad Syamsu Rizaludin ◽  
Nejc Stopnisek ◽  
Jos M. Raaijmakers ◽  
Paolina Garbeva

Plants are faced with various biotic and abiotic stresses during their life cycle. To withstand these stresses, plants have evolved adaptive strategies including the production of a wide array of primary and secondary metabolites. Some of these metabolites can have direct defensive effects, while others act as chemical cues attracting beneficial (micro)organisms for protection. Similar to aboveground plant tissues, plant roots also appear to have evolved “a cry for help” response upon exposure to stress, leading to the recruitment of beneficial microorganisms to help minimize the damage caused by the stress. Furthermore, emerging evidence indicates that microbial recruitment to the plant roots is, at least in part, mediated by quantitative and/or qualitative changes in root exudate composition. Both volatile and water-soluble compounds have been implicated as important signals for the recruitment and activation of beneficial root-associated microbes. Here we provide an overview of our current understanding of belowground chemical communication, particularly how stressed plants shape its protective root microbiome.


2021 ◽  
pp. 108391
Author(s):  
Alex Williams ◽  
Holly Langridge ◽  
Angela L. Straathof ◽  
Graeme Fox ◽  
Howbeer Muhammadali ◽  
...  
Keyword(s):  

1985 ◽  
Vol 86 (2) ◽  
pp. 287-290 ◽  
Author(s):  
N. Fries ◽  
M. Bardet ◽  
K. Serck-Hanssen

Microbiology ◽  
2011 ◽  
Vol 157 (10) ◽  
pp. 2904-2911 ◽  
Author(s):  
Michael Wyrebek ◽  
Cristina Huber ◽  
Ramanpreet Kaur Sasan ◽  
Michael J. Bidochka

Here we tested the hypothesis that species of the soil-inhabiting insect-pathogenic fungus Metarhizium are not randomly distributed in soils but show plant-rhizosphere-specific associations. We isolated Metarhizium from plant roots at two sites in Ontario, Canada, sequenced the 5′ EF-1α gene to discern Metarhizium species, and developed an RFLP test for rapid species identification. Results indicated a non-random association of three Metarhizium species (Metarhizium robertsii, Metarhizium brunneum and Metarhizium guizhouense) with the rhizosphere of certain types of plant species (identified to species and categorized as grasses, wildflowers, shrubs and trees). M. robertsii was the only species that was found associated with grass roots, suggesting a possible exclusion of M. brunneum and M. guizhouense. Supporting this, in vitro experiments showed that M. robertsii conidia germinated significantly better in Panicum virgatum (switchgrass) root exudate than did M. brunneum or M. guizhouense. M. guizhouense and M. brunneum only associated with wildflower rhizosphere when co-occurring with M. robertsii. With the exception of these co-occurrences, M. guizhouense was found to associate exclusively with the rhizosphere of tree species, predominantly Acer saccharum (sugar maple), while M. brunneum was found to associate exclusively with the rhizosphere of shrubs and trees. These associations demonstrate that different species of Metarhizium associate with specific plant types.


Gene ◽  
2021 ◽  
Vol 774 ◽  
pp. 145418
Author(s):  
Kirill Azarin ◽  
Alexander Usatov ◽  
Maksim Makarenko ◽  
Vladimir Khachumov ◽  
Vera Gavrilova

2021 ◽  
Author(s):  
Mei Liu ◽  
Jia-Hao Wen ◽  
Ya-Mei Chen ◽  
Wen-Juan Xu ◽  
Qiong Wang ◽  
...  

Abstract Aims Plant-derived carbon (C) inputs via foliar litter, root litter and root exudates are key drivers of soil organic C stocks. However, the responses of these three input pathways to climate warming have rarely been studied in alpine shrublands. Methods By employing a three-year warming experiment (increased by1.3 ℃), we investigated the effects of warming on the relative C contributions from foliar litter, root litter and root exudates from Sibiraea angustata, a dominant shrub species in an alpine shrubland on the eastern Qinghai-Tibetan Plateau. Important Findings The soil organic C inputs from foliar litter, root litter and root exudates were 77.45, 90.58 and 26.94 g C m -2, respectively. Warming only slightly increased the soil organic C inputs from foliar litter and root litter by 8.04 and 11.13 g C m -2, but significantly increased the root exudate C input by 15.40 g C m -2. Warming significantly increased the relative C contributions of root exudates to total C inputs by 4.6% but slightly decreased those of foliar litter and root litter by 2.5% and 2.1%, respectively. Our results highlight that climate warming may stimulate plant-derived C inputs into soils mainly through root exudates rather than litter in alpine shrublands on the Qinghai-Tibetan Plateau.


2017 ◽  
Vol 5 (30) ◽  
Author(s):  
Ali Asaff-Torres ◽  
Mariana Armendáriz-Ruiz ◽  
Manuel Kirchmayr ◽  
Raúl Rodríguez-Heredia ◽  
Marcos Orozco ◽  
...  

ABSTRACT Rhizospheric microbiomes of Capsicum annuum L. cultivated either conventionally or amended with a synthetic microbial consortium or a root exudate inductor, were characterized by 16S/internal transcribed spacer 2 (ITS2) rRNA amplicon metagenome sequencing. The most abundant taxa found, although differently represented in each treatment, were Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, and Bacilli, as well as Chytridiomycetes and Mortierellomycotina.


2005 ◽  
pp. 209-230 ◽  
Author(s):  
Bernard Poinso ◽  
Hervé Serieys ◽  
André Bervillé ◽  
Marie-Hélène Muller
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document