root litter
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 35)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 198 ◽  
pp. 104696
Author(s):  
Lorène Siegwart ◽  
Isabelle Bertrand ◽  
Olivier Roupsard ◽  
Maxime Duthoit ◽  
Christophe Jourdan

Ecosystems ◽  
2021 ◽  
Author(s):  
Janna Wambsganss ◽  
Grégoire T. Freschet ◽  
Friderike Beyer ◽  
Jürgen Bauhus ◽  
Michael Scherer-Lorenzen

AbstractDecomposition of dead fine roots contributes significantly to nutrient cycling and soil organic matter stabilization. Most knowledge of tree fine-root decomposition stems from studies in monospecific stands or single-species litter, although most forests are mixed. Therefore, we assessed how tree species mixing affects fine-root litter mass loss and which role initial litter quality and environmental factors play. For this purpose, we determined fine-root decomposition of 13 common tree species in four European forest types ranging from boreal to Mediterranean climates. Litter incubations in 315 tree neighborhoods allowed for separating the effects of litter species from environmental influences and litter mixing (direct) from tree diversity (indirect). On average, mass loss of mixed-species litter was higher than those of single-species litter in monospecific neighborhoods. This was mainly attributable to indirect diversity effects, that is, alterations in microenvironmental conditions as a result of tree species mixing, rather than direct diversity effects, that is, litter mixing itself. Tree species mixing effects were relatively weak, and initial litter quality and environmental conditions were more important predictors of fine-root litter mass loss than tree diversity. We showed that tree species mixing can alter fine-root litter mass loss across large environmental gradients, but these effects are context-dependent and of moderate importance compared to environmental influences. Interactions between species identity and site conditions need to be considered to explain diversity effects on fine-root decomposition.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Erin E. Nuccio ◽  
Nhu H. Nguyen ◽  
Ulisses Nunes da Rocha ◽  
Xavier Mayali ◽  
Jeremy Bougoure ◽  
...  

AbstractRoots are a primary source of organic carbon input in most soils. The consumption of living and detrital root inputs involves multi-trophic processes and multiple kingdoms of microbial life, but typical microbial ecology studies focus on only one or two major lineages. We used Illumina shotgun RNA sequencing to conduct PCR-independent SSU rRNA community analysis (“community RNA-Seq”) and simultaneously assess the bacteria, archaea, fungi, and microfauna surrounding both living and decomposing roots of the annual grass, Avena fatua. Plants were grown in 13CO2-labeled microcosms amended with 15N-root litter to identify the preferences of rhizosphere organisms for root exudates (13C) versus decaying root biomass (15N) using NanoSIMS microarray imaging (Chip-SIP). When litter was available, rhizosphere and bulk soil had significantly more Amoebozoa, which are potentially important yet often overlooked top-down drivers of detritusphere community dynamics and nutrient cycling. Bulk soil containing litter was depleted in Actinobacteria but had significantly more Bacteroidetes and Proteobacteria. While Actinobacteria were abundant in the rhizosphere, Chip-SIP showed Actinobacteria preferentially incorporated litter relative to root exudates, indicating this group’s more prominent role in detritus elemental cycling in the rhizosphere. Our results emphasize that decomposition is a multi-trophic process involving complex interactions, and our methodology can be used to track the trajectory of carbon through multi-kingdom soil food webs.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xin Liu ◽  
Miaojing Meng ◽  
Yong Zhang ◽  
Chong Li ◽  
Shilin Ma ◽  
...  

Abstract Background China has been increasingly subject to significant acid rain, which has negative impacts on forest ecosystems. Recently, the concentrations of NO3− in acid rain have increased in conjunction with the rapid rise of nitrogen deposition, which makes it difficult to precisely quantify the impacts of acid rain on forest ecosystems. Methods For this study, mesocosm experiments employed a random block design, comprised of ten treatments involving 120 discrete plots (0.6 m × 2.0 m). The decomposition of fine roots and dynamics of nutrient loss were evaluated under the stress of three acid rain analogues (e.g., sulfuric (SO42−/NO3− 5:1), nitric (1:5), and mixed (1:1)). Furthermore, the influences of soil properties (e.g., soil pH, soil total carbon, nitrogen, C/N ratio, available phosphorus, available potassium, and enzyme activity) on the decomposition of fine roots were analyzed. Results The soil pH and decomposition rate of fine root litter decreased when exposed to simulated acid rain with lower pH levels and higher NO3− concentrations. The activities of soil enzymes were significantly reduced when subjected to acid rain with higher acidity. The activities of soil urease were more sensitive to the effects of the SO42−/NO3− (S/N) ratio of acid rain than other soil enzyme activities over four decomposition time periods. Furthermore, the acid rain pH significantly influenced the total carbon (TC) of fine roots during decomposition. However, the S/N ratio of acid rain had significant impacts on the total nitrogen (TN). In addition, the pH and S/N ratio of the acid rain had greater impacts on the metal elements (K, Ca, and Al) of fine roots than did TC, TN, and total phosphorus. Structural equation modeling results revealed that the acid rain pH had a stronger indirect impact (0.757) on the decomposition rate of fine roots (via altered soil pH and enzyme activities) than direct effects. However, the indirect effects of the acid rain S/N ratio (0.265) on the fine root decomposition rate through changes in soil urease activities and the content of litter elements were lower than the pH of acid rain. Conclusions Our results suggested that the acid rain S/N ratio exacerbates the inhibitory effects of acid rain pH on the decomposition of fine root litter.


2021 ◽  
Author(s):  
Kazumichi Fujii ◽  
Chie Hayakawa

Abstract Aims Climate warming is predicted to increase permafrost degradation and soil carbon (C) loss, while changes in microrelief and vegetation cover can also influence soil C storage at local scale. Black spruce forests develop lichen/moss-covered organic mounds on permafrost. Recalcitrance of lichen and moss litters, as well as cold climate, is hypothesized to increase C storage in hummocky soils. Methods We compared the decomposition rates of lichen and moss litters, spruce root litter, and cellulose at hummocky clayey soils, non-hummocky clayey soils, and non-hummocky sandy soils in northwest Canadian subarctic. Results Lichen/moss-covered hummocky clayey soils display greater C stocks than non-hummocky clayey and sandy soils. Lichen and moss litters decomposed more slowly than did spruce root litter and cellulose. Recalcitrant litter inputs of lichen and moss contribute to greater C stocks of hummocky clayey soils, compared to non-hummocky clayey and sandy soils. Lower temperature dependency of lichen and moss litter decomposition, compared to vascular plant litter, suggests stronger resistance of lichen and moss litters to decomposition. Conclusion Permafrost degradation by climate warming would reduce hummocky microrelief covered by lichen and moss, major contributors to soil C, and decrease the high potential for C storage of black spruce forests on permafrost.


2021 ◽  
Author(s):  
Mei Liu ◽  
Jia-Hao Wen ◽  
Ya-Mei Chen ◽  
Wen-Juan Xu ◽  
Qiong Wang ◽  
...  

Abstract Aims Plant-derived carbon (C) inputs via foliar litter, root litter and root exudates are key drivers of soil organic C stocks. However, the responses of these three input pathways to climate warming have rarely been studied in alpine shrublands. Methods By employing a three-year warming experiment (increased by1.3 ℃), we investigated the effects of warming on the relative C contributions from foliar litter, root litter and root exudates from Sibiraea angustata, a dominant shrub species in an alpine shrubland on the eastern Qinghai-Tibetan Plateau. Important Findings The soil organic C inputs from foliar litter, root litter and root exudates were 77.45, 90.58 and 26.94 g C m -2, respectively. Warming only slightly increased the soil organic C inputs from foliar litter and root litter by 8.04 and 11.13 g C m -2, but significantly increased the root exudate C input by 15.40 g C m -2. Warming significantly increased the relative C contributions of root exudates to total C inputs by 4.6% but slightly decreased those of foliar litter and root litter by 2.5% and 2.1%, respectively. Our results highlight that climate warming may stimulate plant-derived C inputs into soils mainly through root exudates rather than litter in alpine shrublands on the Qinghai-Tibetan Plateau.


2021 ◽  
Author(s):  
Gesche Blume-Werry ◽  
Vanessa Di Maurizio ◽  
Ilka Beil ◽  
Signe Lett ◽  
Sarah Schwieger ◽  
...  

Abstract Purpose The standardized ‘Tea Bag Index’ enables comparisons of litter decomposition rates, a key component of carbon cycling, across ecosystems. However, tea ‘litter’ may leach more than other plant litter, skewing comparisons of decomposition rates between sites with differing moisture conditions. Therefore, some researchers leach tea bags before field incubation. This decreases comparability between studies, and it is unclear if this modification is necessary. Methods We submerged green and rooibos tea bags in water, and measured their leaching losses over time (2 min – 72 h). We also compared leaching of tea to leaf and root litter from other plant species, and finally, compared mass loss of pre-leached and standard tea bags in a fully factorial incubation experiment differing in soil moisture (wet and dry) and soil types (sand and peat). Results Both green and rooibos tea leached strongly, levelling-off at about 40% and 20% mass loss, respectively. Mass loss from leaching was highest in green tea followed by leaves of other plants, then rooibos tea, and finally roots of other plants. When incubated for 4 weeks, both teas showed lower mass loss when they had been pre-leached compared to standard tea bags. However, these differences between standard and pre-leached tea bags were similar in moist vs. dry soils, both in peat and in sand. Conclusions Thus, despite large leaching losses, we conclude that leaching tea bags before field or lab incubation is not necessary to compare decomposition rates between systems, ranging from as much as 5% to 25% soil moisture.


Sign in / Sign up

Export Citation Format

Share Document