scholarly journals Clinical Validation of Therapeutic Drug Monitoring of Imipenem in Spent Effluent in Critically Ill Patients Receiving Continuous Renal Replacement Therapy: A Pilot Study

PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153927 ◽  
Author(s):  
Aiping Wen ◽  
Zhe Li ◽  
Junxian Yu ◽  
Ren Li ◽  
Sheng Cheng ◽  
...  
Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 649
Author(s):  
Christina König ◽  
Anna Both ◽  
Holger Rohde ◽  
Stefan Kluge ◽  
Otto R. Frey ◽  
...  

Cefiderocol is a new siderophore-cephalosporin for the treatment of multi-drug resistant Gram-negative pathogens. As a reserve agent, it will and should be used primarily in critically ill patients in the upcoming years. Due to the novelty of the substance little data on the pharmacokinetics in critically ill patients with septic shock and renal failure (including continuous renal replacement therapy and cytokine adsorber therapy) is available. We performed therapeutic drug monitoring in a cohort of five patients treated with cefiderocol, to improve the knowledge on pharmacokinetics in this vulnerable patient population. As expected for a cephalosporin with predominantly renal elimination the maintenance dose could be reduced in patients with renal impairment or on continuous renal replacement therapy. The manufacturer’s dosing instructions were sufficient to achieve a drug level well above the MIC. However, the addition of a cytokine adsorber might reduce serum levels substantially, so that in this context therapeutic drug monitoring and dose adjustment are recommended.


Pharmacy ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 18 ◽  
Author(s):  
Soo Min Jang ◽  
Sergio Infante ◽  
Amir Abdi Pour

Acute kidney injury is very common in critically ill patients requiring renal replacement therapy. Despite the advancement in medicine, the mortality rate from septic shock can be as high as 60%. This manuscript describes drug-dosing considerations and challenges for clinicians. For instance, drugs’ pharmacokinetic changes (e.g., decreased protein binding and increased volume of distribution) and drug property changes in critical illness affecting solute or drug clearance during renal replacement therapy. Moreover, different types of renal replacement therapy (intermittent hemodialysis, prolonged intermittent renal replacement therapy or sustained low-efficiency dialysis, and continuous renal replacement therapy) are discussed to describe how to optimize the drug administration strategies. With updated literature, pharmacodynamic targets and empirical dosing recommendations for commonly used antibiotics in critically ill patients receiving continuous renal replacement therapy are outlined. It is vital to utilize local epidemiology and resistance patterns to select appropriate antibiotics to optimize clinical outcomes. Therapeutic drug monitoring should be used, when possible. This review should be used as a guide to develop a patient-specific antibiotic therapy plan.


PEDIATRICS ◽  
2015 ◽  
Vol 136 (1) ◽  
pp. e270-e274 ◽  
Author(s):  
T. Funaki ◽  
I. Miyata ◽  
K. Shoji ◽  
Y. Enomoto ◽  
S. Sakamoto ◽  
...  

2017 ◽  
Vol 22 (1) ◽  
pp. 69-73
Author(s):  
Jeffrey J. Cies ◽  
Wayne S. Moore ◽  
Susan B. Conley ◽  
Paul Shea ◽  
Adela Enache ◽  
...  

An 11-year-old African American male with severe combined immunodeficiency variant, non-cystic fibrosis bronchiectasis, pancreatic insufficiency, chronic mycobacterium avium-intracellulare infection, chronic sinusitis, and malnutrition presented with a 1-week history of fevers. He subsequently developed respiratory decompensation and cefepime was discontinued and doripenem was initiated. Doripenem was the carbapenem used due to a national shortage of meropenem. By day 7 the patient (24.7 kg) had a positive fluid balance of 6925 mL (28% FO), and on days 7 into 8 developed acute kidney injury evidenced by an elevated serum creatinine of 0.68 mg/dL, an increase from the baseline of 0.28 mg/dL. On day 9, the patient was initiated on continuous renal replacement therapy (CRRT) and the doripenem dosing was changed to a continuous infusion of 2.5 mg/kg/hr (60 mg/kg/day). Approximately 12.5 hours after the start of the doripenem a serum concentration was obtained, which was 4.01 mg/L corresponding to a clearance of 10.5 mL/min/kg. The pediatric dosing and pharmacokinetic data available for doripenem suggest a clearance estimate of 4.4 to 4.8 mL/min/kg, and the adult clearance estimate is 2.4 to 3.78 mL/min/kg. The calculated clearance in our patient of 10.5 mL/min/kg is over double the highest clearance estimate in the pediatric literature. This case demonstrates that doripenem clearance is significantly increased with CRRT in comparison with the published pediatric and adult data. An appropriate pharmacodynamic outcome (time that free drug concentration > minimum inhibitory concentration) can be achieved by continuous infusion doripenem with concurrent therapeutic drug monitoring.


2016 ◽  
Vol 60 (6) ◽  
pp. 3587-3590 ◽  
Author(s):  
Joost B. Koedijk ◽  
Corinne G. H. Valk-Swinkels ◽  
Tom A. Rijpstra ◽  
Daan J. Touw ◽  
Paul G. H. Mulder ◽  
...  

The objective of this study was to describe the pharmacokinetics of cefotaxime (CTX) in critically ill patients with acute kidney injury (AKI) when treated with continuous renal replacement therapy (CRRT) in the intensive care unit (ICU). This single-center prospective observational pilot study was performed among ICU-patients with AKI receiving ≥48 h concomitant CRRT and CTX. CTX was administered intravenously 1,000 mg (bolus) every 6 h for 4 days. CRRT was performed as continuous venovenous hemofiltration (CVVH). Plasma concentrations of CTX and its active metabolite desacetylcefotaxime (DAC) were measured during CVVH treatment. CTX plasma levels and patient data were used to construct concentration-time curves. By using this data, the duration of plasma levels above 4 mg/liter (four times the MIC) was calculated and analyzed. Twenty-seven patients were included. The median CTX peak level was 55 mg/liter (range, 19 to 98 mg/liter), the median CTX trough level was 12 mg/liter (range, 0.8 to 37 mg/liter), and the median DAC plasma level was 15 mg/liter (range, 1.5 to 48 mg/liter). Five patients (19%) had CTX plasma levels below 4 mg/liter at certain time points during treatment. In at least 83% of the time any patient was treated with CTX, the CTX plasma level stayed above 4 mg/liter. A dosing regimen of 1,000 mg of CTX given four times daily is likely to achieve adequate plasma levels in patients with AKI treated with CVVH. Dose reduction might be a risk for suboptimal treatment.


2021 ◽  
Vol 9 (10) ◽  
pp. 2087
Author(s):  
Jörn Grensemann ◽  
Christoph Pfaffendorf ◽  
Sebastian G. Wicha ◽  
Christina König ◽  
Kevin Roedl ◽  
...  

Infection and sepsis are a main cause of acute-on-chronic liver failure (ACLF). Besides bacteria, molds play a role. Voriconazole (VRC) is recommended but its pharmacokinetics (PK) may be altered by ACLF. Because ACLF patients often suffer from concomitant acute renal failure, we studied the PK of VRC in patients receiving continuous renal replacement therapy (RRT) with ACLF and compared it to PK of VRC in critically ill patients with RRT without concomitant liver failure (NLF). In this prospective cohort study, patients received weight-based VRC. Pre- and post-dialysis membrane, and dialysate samples obtained at different time points were analyzed by high-performance liquid chromatography. An integrated dialysis pharmacometric model was used to model the available PK data. The recommended, 50% lower, and 50% higher doses were analyzed by Monte-Carlo simulation (MCS) for day 1 and at steady-state with a target trough concentration (TC) of 0.5–3mg/L. Fifteen patients were included in this study. Of these, 6 patients suffered from ACLF. A two-compartment model with linear clearance described VRC PK. No difference for central (V1) or peripheral (V2) volumes of distribution or clearance could be demonstrated between the groups. V1 was 80.6L (95% confidence interval: 62.6–104) and V2 106L (65–166) with a body clearance of 4.7L/h (2.87–7.81) and RRT clearance of 1.46L/h (1.29–1.64). MCS showed TC below/within/above target of 10/74/16% on day 1 and 9/39/52% at steady-state for the recommended dose. A 50% lower dose resulted in 26/72/1% (day 1) and 17/64/19% at steady-state and 7/57/37% and 7/27/67% for a 50% higher dose. VRC pharmacokinetics are not significantly influenced by ACLF in critically ill patients who receive RRT. Maintenance dose should be adjusted in both groups. Due to the high interindividual variability, therapeutic drug monitoring seems inevitable.


Sign in / Sign up

Export Citation Format

Share Document