scholarly journals Instantaneous Flow Structures and Opportunities for Larval Settlement: Barnacle Larvae Swim to Settle

PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0158957 ◽  
Author(s):  
Ann I. Larsson ◽  
Lena M. Granhag ◽  
Per R. Jonsson
2020 ◽  
Vol 106 (1) ◽  
pp. 231-259
Author(s):  
Mehdi Sadeghi ◽  
Karine Truffin ◽  
Brian Peterson ◽  
Benjamin Böhm ◽  
Stéphane Jay

1999 ◽  
Author(s):  
Hongsheng Zhang ◽  
Carl D. Meinhart

Abstract This paper presents experimental measurements and observations of instantaneous flow structures inside an inkjet printhead, using a micron-resolution Particle Image Velocimetry (PIV) system to record visualized flows and calculate velocity fields. The PIV technique uses 700 nm diameter fluorescent flow-tracing particles, a pulsed Nd:YAG laser, an epi-fluorescent microscope and an interline-transfer CCD camera to record images of a flow at two successive instances in time. By measuring how far a set of particles move during a specified duration of time, an estimate of the local fluid velocity can be obtained. An electronic timing strategy has been developed to synchronize the PIV lasers, the CCD camera and the drop ejection system. An overall flow pattern during a 500 μs ejection cycle has been observed by phase-averaging hundreds of instantaneous velocity fields, which were recorded at 2–5 μs intervals throughout the cycle. A velocity field with spatial resolution of approximately 10 μm was obtained near the inkjet nozzle. Meniscus and nodes inside the printhead were also observed and recorded.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 659 ◽  
Author(s):  
Hehe Ren ◽  
Shujin Laima ◽  
Hui Li

Wall-model large eddy simulations (WMLES) are conducted to investigate the spatial features of large-scale and very-large-scale motions (LSMs and VLSMs) in turbulent boundary flow in different surface roughnesses at a very high Reynolds number, O (106–107). The results of the simulation of nearly smooth cases display good agreement with field observations and experimental data, both dimensioned using inner and outer variables. Using pre-multiplied spectral analysis, the size of VLSMs can be reduced or even disappear with increasing roughness, which indirectly supports the concept that the bottom-up mechanism is one of the origins of VLSMs. With increases in height, the power of pre-multiplied spectra at both high and low wavenumber regions decreases, which is consistent with most observational and experimental results. Furthermore, we find that the change in the spectrum scaling law from −1 to −5/3 is a gradual process. Due to the limitations of the computational domain and coarse grid that were adopted, some VLSMs and small-scale turbulence are truncated. However, the size of LSMs is fully accounted for. From the perspective of the spatial correlation of the flow field, the structural characteristics of VLSMs under various surface roughnesses, including three-dimensional length scales and inclination angles, are obtained intuitively, and the conclusions are found to be in good agreement with the velocity spectra. Finally, the generation, development and extinction of three-dimensional VLSMs are analyzed by instantaneous flow and vorticity field, and it shows that the instantaneous flow field gives evidence of low-speed streamwise-elongated flow structures with negative streamwise velocity fluctuation component, and which are flanked on each side by similarly high-speed streamwise-elongated flow structures. Moreover, each of the low-speed streamwise-elongated flow structure lies beneath many vortices.


Author(s):  
N. P. Benfer ◽  
B. A. King ◽  
C. J. Lemckert ◽  
S. Zigic

Sign in / Sign up

Export Citation Format

Share Document