scholarly journals An Empirical Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance, Meteorological and Satellite Observations

PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0160150 ◽  
Author(s):  
Fei Feng ◽  
Xianglan Li ◽  
Yunjun Yao ◽  
Shunlin Liang ◽  
Jiquan Chen ◽  
...  
2014 ◽  
Vol 119 (8) ◽  
pp. 4521-4545 ◽  
Author(s):  
Yunjun Yao ◽  
Shunlin Liang ◽  
Xianglan Li ◽  
Yang Hong ◽  
Joshua B. Fisher ◽  
...  

2011 ◽  
Vol 2 (1) ◽  
pp. 87-103 ◽  
Author(s):  
N. A. Brunsell ◽  
S. J. Schymanski ◽  
A. Kleidon

Abstract. As a system is moved away from a state of thermodynamic equilibrium, spatial and temporal heterogeneity is induced. A possible methodology to assess these impacts is to examine the thermodynamic entropy budget and assess the role of entropy production and transfer between the surface and the atmosphere. Here, we adopted this thermodynamic framework to examine the implications of changing vegetation fractional cover on land surface energy exchange processes using the NOAH land surface model and eddy covariance observations. Simulations that varied the relative fraction of vegetation were used to calculate the resultant entropy budget as a function of fraction of vegetation. Results showed that increasing vegetation fraction increases entropy production by the land surface while decreasing the overall entropy budget (the rate of change in entropy at the surface). This is accomplished largely via simultaneous increase in the entropy production associated with the absorption of solar radiation and a decline in the Bowen ratio (ratio of sensible to latent heat flux), which leads to increasing the entropy export associated with the latent heat flux during the daylight hours and dominated by entropy transfer associated with sensible heat and soil heat fluxes during the nighttime hours. Eddy covariance observations also show that the entropy production has a consistent sensitivity to land cover, while the overall entropy budget appears most related to the net radiation at the surface, however with a large variance. This implies that quantifying the thermodynamic entropy budget and entropy production is a useful metric for assessing biosphere-atmosphere-hydrosphere system interactions.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ori Ahiman ◽  
Yonatan Mekhmandarov ◽  
Moran Pirkner ◽  
Josef Tanny

Irrigation of protected crops requires sound knowledge of evapotranspiration. Previous studies have established that the eddy-covariance (EC) technique is suitable for whole canopy evapotranspiration measurements in large agricultural screenhouses. Nevertheless, the eddy-covariance technique remains difficult to apply in the farm due to costs, operational complexity, and postprocessing of data, thereby inviting alternative techniques to be developed. The subject of this paper is the evaluation of a turbulent transport technique, the flux variance (FV), whose instrumentation needs and operational demands are not as elaborate as the EC, to estimate evapotranspiration within large agricultural structures. Measurements were carried out in three types of agricultural structures: (i) a banana plantation in a light-shading (8%) screenhouse (S1), (ii) a pepper crop in an insect-proof (50-mesh) screenhouse (S2), and (iii) a tomato crop in a naturally ventilated greenhouse with a plastic roof and 50-mesh screened sidewalls (S3). Quality control analysis of the EC data showed that turbulence development and flow stationarity conditions in the three structures were suitable for flux measurements. However, within the insect-proof screenhouse (below the screen) and the plastic-covered greenhouse, R2 of the energy balance closure was poor; hence, the alternative simple method could not be used. Results showed that the FV technique was suitable for reliable estimates of ET in shading and insect-proof screenhouses with R2 of the regressions between FV latent heat flux and latent heat flux deduced from energy balance closure of 0.99 and 0.92 during validation for S1 and S2, respectively.


2013 ◽  
Vol 10 (6) ◽  
pp. 7161-7196 ◽  
Author(s):  
T. Euser ◽  
W. Luxemburg ◽  
C. Everson ◽  
M. Mengistu ◽  
A. Clulow ◽  
...  

Abstract. The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. Despite its simplicity, the Bowen ratio method is generally considered to be unreliable due to the use of two-level sensors that are installed by default in operational Bowen ratio systems. In this paper we present the concept of a new measurement methodology to estimate the Bowen ratio from high resolution vertical dry and wet bulb temperature profiles. A short field experiment with Distributed Temperature Sensing (DTS) in a fibre optic cable having 13 levels was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and temperature at 0.20 m intervals was established. These data allows the computation of the Bowen ratio with a high precision. By linking the Bowen ratio to net radiation and soil heat flux, the daytime latent heat flux was estimated. The latent heat flux derived from DTS-based Bowen ratio (BR-DTS) showed consistent agreement (correlation coefficients between 0.97 and 0.98) with results derived from eddy covariance, surface layer scintillometer and surface renewal techniques. The latent heat from BR-DTS overestimated the latent heat derived with the eddy covariance by 4% and the latent heat derived with the surface layer scintillometer by 8%. Through this research, a new window is opened to engage on simplified, inexpensive and easy to interpret in situ measurement techniques for measuring evaporation.


Sign in / Sign up

Export Citation Format

Share Document