energy balance closure
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 30)

H-INDEX

24
(FIVE YEARS 5)

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3424
Author(s):  
Weizhen Wang ◽  
Feinan Xu ◽  
Jiemin Wang

Investigating the energy and water vapor exchange in oasis riparian forest ecosystems is of significant importance to improve scientific understanding of land surface processes in extreme arid regions. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) provided many observations of water vapor and heat fluxes from riparian forest ecosystem by using a network of eddy-covariance (EC) systems installed over representative surfaces in the Ejina Oasis, which is located in the downstream areas of the Heihe River Basin, northwestern China. Based on EC flux measurements and meteorological data performed at five stations and covering representative surface types of Populus euphratica tree with associated Tamarix chinensis shrub, Tamarix chinensis shrubland, cantaloupe cropland, and barren-land, this study explored the spatio-temporal patterns of heat and water vapor fluxes over the Ejina Oasis riparian forest ecosystem with five different surface types over the course of a growing season in 2014. Energy balance closure of the flux data was evaluated; footprint analysis for each EC site was also performed. Results showed that energy balance closure for the flux data was reasonably good, with average energy balance ratio (EBR) of 1.03. The seasonal variations in net radiation (Rn), latent (LE), and sensible heat flux (H) over the five contrasting surfaces were similar, and a reverse seasonal change was observed in energy partitioning into LE and H. Remarkable differences in Rn, LE, and H between the five surfaces were explored preliminarily, associated closely with the soil properties and foliage phenology. Over the growing season (May–October) in 2014, the total ET ranged 622–731 mm for mixed forest of P. euphratica trees with associated T. chinensis shrubs with average daily ET of 3.6–4.2 mm; ET from T. chinensis shrubland was about 541 mm, with average daily ET of 3.6 mm. ET for barren-land was 195 mm. The total ET in irrigated cantaloupe cropland with plastic mulch was 431 mm for its four-month growing period with a total average of 3.8 mm d−1. Determination of ET over riparian forest ecosystem helps to improve reasonable use of limited water resource in the Ejina Oasis.


2021 ◽  
Vol 6 (66) ◽  
pp. 3418
Author(s):  
John Volk ◽  
Justin Huntington ◽  
Richard Allen ◽  
Forrest Melton ◽  
Martha Anderson ◽  
...  

2021 ◽  
Author(s):  
Fernando Paz ◽  
Ma. Isabel Marin ◽  
Jaime Garatuza-Payán ◽  
Christopher J. Watts ◽  
Julio Cesar Rodriguez ◽  
...  

2021 ◽  
Vol 25 (3) ◽  
pp. 1151-1163
Author(s):  
Peter Widmoser ◽  
Dominik Michel

Abstract. With respect to ongoing discussions about the causes of energy imbalance and approaches to force energy balance closure, a method has been proposed that allows partial latent heat flux closure (Widmoser and Wohlfahrt, 2018). In the present paper, this method is applied to four measurement stations over grassland under humid and semiarid climates, where lysimeter (LY) and eddy covariance (EC) measurements were taken simultaneously. The results differ significantly from the ones reported in the literature. We distinguish between the resulting EC values being weakly and strongly correlated to LY observations as well as systematic and random deviations between the LY and EC values. Overall, an excellent match could be achieved between the LY and EC measurements after applying evaporation-linked weights. But there remain large differences between the standard deviations of the LY and adjusted EC values. For further studies we recommend data collected at time intervals even below 0.5 h. No correlation could be found between evaporation weights and weather indices. Only for some datasets, a positive correlation between evaporation and the evaporation weight could be found. This effect appears pronounced for cases with high radiation and plant water stress. Without further knowledge of the causes of energy imbalance one might perform full closure using equally distributed weights. Full closure, however, is not dealt with in this paper.


2021 ◽  
Author(s):  
Johannes Speidel ◽  
Hannes Vogelmann ◽  
Matthias Perfahl ◽  
Matthias Mauder ◽  
Luise Wanner

<p>Connecting the earth's surface with the free troposphere, the planetary boundary layer (PBL) comprises complex dynamics of turbulent behavior. This especially applies for areas with heterogeneous terrain. Relevant near-ground processes such as released energy fluxes and the emission of aerosols and trace gases directly interact with the atmosphere. Therefore, the PBL's physical state is determined both by the near-ground processes as well as entrainment of air parcels from higher layers. The mainly turbulence-driven transport of particles and properties throughout the PBL constrain a comprehensive understanding of the PBL's behavior. Hence, the energy balance closure problem as well as errors in precipitation forecast in long-term numerical weather predictions, amongst others, remain unresolved challenges. Here, ground-based lidar profiling is a well suitable method for observing the PBL, as data sampling allows for high temporal and vertical resolutions (Here: Sampling rate of 100\,Hz and 7.5\,m). During the CHEESEHEAD campaign, carried out in summer 2019, our newly developed ATMONSYS lidar performed measurements over complex terrain in northern Wisconsin. There, our lidar system was embedded in a dense network of multiple in-situ and remote sensing instruments. The central aim of this campaign was to further contribute to solve the energy balance closure problem. With the ATMONSYS lidar, vertical columns of aerosol backscatter coefficients, water vapor and temperature have been recorded. The presented work shows what the data is suitable for in terms of resolution and temporal extent in the first place. As a second point, focus is given on structure and variability of aerosol backscatter coefficient distributions and water vapor concentrations as well as their implications on the prevailing state of the PBL. Based on the presented findings, we discuss the potential and suitability of this experimental data for deriving transport processes within the PBL.</p>


2021 ◽  
Author(s):  
Luise Wanner ◽  
Sreenath Paleri ◽  
Johannes Speidel ◽  
Ankur Desai ◽  
Matthias Sühring ◽  
...  

<p>Large-eddy simulations are useful tools to study transport processes by mesoscale structures in the atmospheric boundary layer, since in contrast to single-tower eddy covariance measurements, they provide not only temporally but also spatially highly resolved information. Therefore, they are well suited to study the energy balance closure problem, for which the mesoscale transport of latent and sensible heat, triggered by heterogeneous ecosystems, is suspected to be a major cause. However, this requires simulations that are as realistic as possible and thus allow a comparison of real measurements in the field and virtual measurements in the simulation.<br>During the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD) experiment in the summer of 2019, a heterogeneous 10x10 square km domain was intensively sampled across scales. This data offers a unique possibility to set up large-eddy simulations with realistic surface heterogeneity. We use PALM to simulate two days and an area of 40 by 40 square kilometers incorporating the CHEESEHEAD site. The large scale atmospheric forcings to inform the boundary conditions are determined from the NCEP HRRR product. As the lower boundary condition, we use a soil and land-surface model coupled with a plant-canopy model, which we adapt to the CHEESEHEAD area based on ground-based and airborne measurements of plant physiological data.<br>In this study, we investigate how well the simulations match with real measurements by comparing simulated profiles and virtual tower measurements with field measurements from radiosonde ascents, lidar measurements of three-dimensional wind and water vapor, eddy-covariance measurements from the 400 meter tower in the center of the study domain, as well as from typical eddy-covariance stations distributed through the study area. This way, we investigate how realistic the simulations actually are and to what extent the knowledge gained from them concerning the energy balance closure problem can be transferred to field measurements.</p>


2021 ◽  
Author(s):  
Matthias Mauder

<p>Quantitative knowledge of the surface energy balance is essential for the prediction of weather and climate. However, a multitude of studies from around the world indicates that the turbulent heat fluxes are generally underestimated using eddy-covariance measurements, and hence, the surface energy balance is not closed. This energy balance closure problem has been heavily covered in the literature for more than 25 years, and as a result, several instrumental and methodological aspects have been reconsidered and partially revised. Nevertheless, a non-negligible energy imbalance remains, and we demonstrate that a major portion of this imbalance can be explained by dispersive fluxes in the surface layer, which are associated with submesoscale secondary circulations. Such large-scale organized structures are a very common phenomenon in the convective boundary layer, and depending on static stability, they can either be roll-like or cell-like and occur even over homogeneous surfaces. Over heterogeneous surfaces, thermally-induced mesoscale circulations can occur in addition to those. Either way, the associated dispersive heat fluxes can inherently not be captured by single-tower measurements, since the ergodicity assumption is violated. As a consequence, energy transported non-turbulently will not be sensed by eddy-covariance systems and a bias towards lower energy fluxes will result. The objective of this research is to develop a model that can be used to correct single-tower eddy-covariance data. As a first step towards this goal, we will present a parametrisation for dispersive fluxes, which was developed based on an idealized high-resolution LES study for homogeneous surfaces, as a function of non-local scaling variables. Secondly, we explore how well this parametrisation works for a number of real-world eddy-covariance sites.</p>


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 243
Author(s):  
Dexiong Teng ◽  
Xuemin He ◽  
Lu Qin ◽  
Guanghui Lv

A persistent problem in surface flux research is that turbulent fluxes observed by eddy covariance methods tend to be lower than the available energy. Using 7 years of eddy covariance flux observations in the Ebinur Lake National Wetland Nature Reserve (ELNWNR) in Xinjiang, Northwest China, this study analyzes the surface–atmosphere energy transfer characteristics at the station to explore variation characteristics of the energy flux and the energy balance closure (EBC), and the factors that influence EBC. The results show that: (1) diurnal and seasonal variations are observed in turbulent flux, available energy, and the partitioning of sensible and latent fluxes affected by environmental factors; (2) the degree of EBC varies significantly diurnally and seasonally, with EBC during the growing season significantly higher than during the dormant season; (3) due to the surface heterogeneity, EBC exhibits significant variations with wind direction that differ between the growing and dormant seasons; (4) environmental factors (e.g., vapor pressure deficit and air temperature) are important in limiting near-surface EBC, but they play a secondary role compared with the state of atmospheric motion. This study provides a basis for accurately assessing the material and energy exchanges between the desert Tugai forest ecosystem and the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document