scholarly journals Steroidogenic Acute Regulatory Protein Overexpression Correlates with Protein Kinase A Activation in Adrenocortical Adenoma

PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0162606 ◽  
Author(s):  
Weiwei Zhou ◽  
Luming Wu ◽  
Jing Xie ◽  
Tingwei Su ◽  
Lei Jiang ◽  
...  
Endocrinology ◽  
2005 ◽  
Vol 146 (7) ◽  
pp. 2903-2910 ◽  
Author(s):  
Kimihisa Tajima ◽  
Kumiko Yoshii ◽  
Shin Fukuda ◽  
Makoto Orisaka ◽  
Kaoru Miyamoto ◽  
...  

Abstract It has been reported that gonadotropins promoted phosphorylation of ERK/MAPK in granulosa cells. However, little is known about the effects of gonadotropin on ERK activity in theca cells. This study explores how LH/forskolin controls ERK phosphorylation in cultured bovine theca cells. Effects of ERK on steroidogenesis were also investigated. Phosphorylation of ERK in bovine theca cells was augmented by LH and forskolin in 5 min; it decreased thereafter below basal levels in 20 min. Nevertheless, phosphorylation of the ERK kinase, MEK, was unaffected. Addition of H89 (a protein kinase A inhibitor) significantly reduced the effect of LH/forskolin on ERK phosphorylation. A potent MEK inhibitor PD98059 eliminated ERK phosphorylation and augmented progesterone production concomitantly with the elevation of intracellular steroidogenic acute regulatory protein mRNA in LH/forskolin-stimulated theca cells. In contrast to progesterone production, androgen production was diminished significantly by inhibition of ERK with decreased intracellular P450c17 mRNA levels. Taking these results together, we conclude that LH/cAMP leads to phosphorylation of ERK in a biphasic manner through MEK-independent pathway in bovine theca cells. Protein kinase A-induced phosphatase could possibly contribute to the phosphorylation process. Furthermore, modulation of ERK phosphorylation involves control of thecal steroidogenesis via modulation of the expression of steroidogenic acute regulatory protein and P450c17.


2007 ◽  
Vol 176 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Jianzhong Han ◽  
Liang Han ◽  
Priyanka Tiwari ◽  
Zhexing Wen ◽  
James Q. Zheng

The second messenger cyclic adenosine monophosphate (cAMP) plays a pivotal role in axonal growth and guidance, but its downstream mechanisms remain elusive. In this study, we report that type II protein kinase A (PKA) is highly enriched in growth cone filopodia, and this spatial localization enables the coupling of cAMP signaling to its specific effectors to regulate guidance responses. Disrupting the localization of PKA to filopodia impairs cAMP-mediated growth cone attraction and prevents the switching of repulsive responses to attraction by elevated cAMP. Our data further show that PKA targets protein phosphatase-1 (PP1) through the phosphorylation of a regulatory protein inhibitor-1 (I-1) to promote growth cone attraction. Finally, we find that I-1 and PP1 mediate growth cone repulsion induced by myelin-associated glycoprotein. These findings demonstrate that the spatial localization of type II PKA to growth cone filopodia plays an important role in the regulation of growth cone motility and guidance by cAMP.


Sign in / Sign up

Export Citation Format

Share Document