scholarly journals Phylogeography, mitochondrial DNA diversity, and demographic history of geladas (Theropithecus gelada)

PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0202303 ◽  
Author(s):  
Dietmar Zinner ◽  
Anagaw Atickem ◽  
Jacinta C. Beehner ◽  
Afework Bekele ◽  
Thore J. Bergman ◽  
...  
2021 ◽  
Vol 6 (4) ◽  
pp. 1462-1467
Author(s):  
Xunhe Huang ◽  
Zhuoxian Weng ◽  
Yujing He ◽  
Yongwang Miao ◽  
Wei Luo ◽  
...  

Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1511-1518 ◽  
Author(s):  
Ning Yu ◽  
Michael I Jensen-Seaman ◽  
Leona Chemnick ◽  
Judith R Kidd ◽  
Amos S Deinard ◽  
...  

Abstract Comparison of the levels of nucleotide diversity in humans and apes may provide much insight into the mechanisms of maintenance of DNA polymorphism and the demographic history of these organisms. In the past, abundant mitochondrial DNA (mtDNA) polymorphism data indicated that nucleotide diversity (π) is more than threefold higher in chimpanzees than in humans. Furthermore, it has recently been claimed, on the basis of limited data, that this is also true for nuclear DNA. In this study we sequenced 50 noncoding, nonrepetitive DNA segments randomly chosen from the nuclear genome in 9 bonobos and 17 chimpanzees. Surprisingly, the π value for bonobos is only 0.078%, even somewhat lower than that (0.088%) for humans for the same 50 segments. The π values are 0.092, 0.130, and 0.082% for East, Central, and West African chimpanzees, respectively, and 0.132% for all chimpanzees. These values are similar to or at most only 1.5 times higher than that for humans. The much larger difference in mtDNA diversity than in nuclear DNA diversity between humans and chimpanzees is puzzling. We speculate that it is due mainly to a reduction in effective population size (Ne) in the human lineage after the human-chimpanzee divergence, because a reduction in Ne has a stronger effect on mtDNA diversity than on nuclear DNA diversity.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e81952 ◽  
Author(s):  
Sevgin Demirci ◽  
Evren Koban Baştanlar ◽  
Nihan Dilşad Dağtaş ◽  
Evangelia Pişkin ◽  
Atilla Engin ◽  
...  

Human Biology ◽  
2019 ◽  
Vol 91 (2) ◽  
pp. 57
Author(s):  
Postillone ◽  
Cobos ◽  
Urrutia ◽  
Dejean ◽  
Gonzalez ◽  
...  

2015 ◽  
Vol 58 (2) ◽  
pp. 335-342
Author(s):  
S. Zielińska ◽  
I. Głażewska

Abstract. The purpose of the article is to illustrate the use of pedigree analysis to evaluate mtDNA diversity in a selected population of pedigree dogs, to describe the paths of mtDNA inheritance and to estimate the spread of potential pedigree errors or mutations that occurred in different generations of ancestors. Hovawart, old German breed, was used as an example. The number and frequencies of mtDNA haplotypes were calculated based on numbers of dam lines and their representatives. The scale of potential errors in calculations that can result from pedigree errors or from new mutations in ancestors from the 5th or 10th ancestral generation was evaluated. The analysis included 368 breeding bitches from four German kennel organizations. The bitches represented three dam lines, with the Ho1, Ho2 and HoU mtDNA haplotypes. Significant differences in the frequency of the haplotypes in the population, from 0.27 to 73.37 %, and among kennel organizations and regions of the country were recorded. Considerable differences in the scale of potential errors in calculations arising from mtDNA mutations or pedigree errors were noted between 0.27 and 28.69 %, depending on the number of representatives of the subline in which the error appeared and the generation taken into account in the simulations. The study revealed an interesting paradox: although the differences between the haplotypes are the result of events (mutations) from thousands of years ago, the number and the frequencies of the haplotypes in the population are the result of the modern history of the population and current breeding policy.


Sign in / Sign up

Export Citation Format

Share Document