mtdna haplotypes
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Hiroaki Nakanishi ◽  
Katsumi Yoneyama ◽  
Masaaki Hara ◽  
Aya Takada ◽  
Kentaro Sakai ◽  
...  
Keyword(s):  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joanna Malukiewicz ◽  
Reed A. Cartwright ◽  
Nelson H. A. Curi ◽  
Jorge A. Dergam ◽  
Claudia S. Igayara ◽  
...  

Abstract Background Callithrix marmosets are a relatively young primate radiation, whose phylogeny is not yet fully resolved. These primates are naturally para- and allopatric, but three species with highly invasive potential have been introduced into the southeastern Brazilian Atlantic Forest by the pet trade. There, these species hybridize with each other and endangered, native congeners. We aimed here to reconstruct a robust Callithrix phylogeny and divergence time estimates, and identify the biogeographic origins of autochthonous and allochthonous Callithrix mitogenome lineages. We sequenced 49 mitogenomes from four species (C. aurita, C. geoffroyi, C. jacchus, C. penicillata) and anthropogenic hybrids (C. aurita x Callithrix sp., C. penicillata x C. jacchus, Callithrix sp. x Callithrix sp., C. penicillata x C. geoffroyi) via Sanger and whole genome sequencing. We combined these data with previously published Callithrix mitogenomes to analyze five Callithrix species in total. Results We report the complete sequence and organization of the C. aurita mitogenome. Phylogenetic analyses showed that C. aurita was the first to diverge within Callithrix 3.54 million years ago (Ma), while C. jacchus and C. penicillata lineages diverged most recently 0.5 Ma as sister clades. MtDNA clades of C. aurita, C. geoffroyi, and C. penicillata show intraspecific geographic structure, but C. penicillata clades appear polyphyletic. Hybrids, which were identified by phenotype, possessed mainly C. penicillata or C. jacchus mtDNA haplotypes. The biogeographic origins of mtDNA haplotypes from hybrid and allochthonous Callithrix were broadly distributed across natural Callithrix ranges. Our phylogenetic results also evidence introgression of C. jacchus mtDNA into C. aurita. Conclusion Our robust Callithrix mitogenome phylogeny shows C. aurita lineages as basal and C. jacchus lineages among the most recent within Callithrix. We provide the first evidence that parental mtDNA lineages of anthropogenic hybrid and allochthonous marmosets are broadly distributed inside and outside of the Atlantic Forest. We also show evidence of cryptic hybridization between allochthonous Callithrix and autochthonous C. aurita. Our results encouragingly show that further development of genomic resources will allow to more clearly elucidate Callithrix evolutionary relationships and understand the dynamics of Callithrix anthropogenic introductions into the Brazilian Atlantic Forest.


2020 ◽  
Author(s):  
Ziv Attia ◽  
Cloe S. Pogoda ◽  
Daniela Vergara ◽  
Nolan C. Kane

ABSTRACTCannabis is one example in angiosperms that appears to have a recent origin of dioecy and X/Y sex chromosomes. Several evolutionary explanations for this transition have been proposed, with the most parsimonious beginning with a mitochondrial mutation leading to cytoplasmic male sterility (CMS). Our study utilized 73 Cannabis sativa whole genome shotgun libraries to reveal eight different mtDNA haplotypes. The most common haplotype contained 60 of the 73 individuals studied and was composed of only dioecious individuals. However, other haplotypes contained a mix of dioecious and monoecious individuals, so haplotype alone does not predict dioecy. From these haplotype groupings we further examined the fully annotated mitochondrial genomes of four hemp individuals and looked for genetic variation affecting reproductive strategy (e.g., monoecious vs. dioecious strategies). Specifically, we searched for markers associated with CMS and for gene rearrangements within these mitochondrial genomes. Our results revealed highly syntenic mitochondrial genomes that contained approximately 60 identifiable sequences for protein coding genes, tRNAs and rRNAs and no obvious rearrangements or chimeric genes. We find no clear evidence that the different reproductive patterns are due to easily identifiable CMS mutations. Our results refute the simplest hypothesis that there was a single recent origin of dioecy in a monoecious ancestor. Instead, the story of the evolution of dioecy is likely much more complex. Further exploration of the nuclear and mitochondrial genomes and their interaction is required to fully understand Cannabis’ mating strategies and the possible existence of CMS in this species.


2020 ◽  
Author(s):  
Hong Ma ◽  
Crystal Van Dyken ◽  
Hayley Darby ◽  
Aleksei Mikhalchenko ◽  
Nuria Marti-Gutierrez ◽  
...  

Abstract STUDY QUESTION What are the long-term developmental, reproductive and genetic consequences of mitochondrial replacement therapy (MRT) in primates? SUMMARY ANSWER Longitudinal investigation of MRT rhesus macaques (Macaca mulatta) generated with donor mtDNA that is exceedingly distant from the original maternal counterpart suggest that their growth, general health and fertility is unremarkable and similar to controls. WHAT IS KNOWN ALREADY Mitochondrial gene mutations contribute to a diverse range of incurable human disorders. MRT via spindle transfer in oocytes was developed and proposed to prevent transmission of pathogenic mtDNA mutations from mothers to children. STUDY DESIGN, SIZE, DURATION The study provides longitudinal studies on general health, fertility as well as transmission and segregation of parental mtDNA haplotypes to various tissues and organs in five adult MRT rhesus macaques and their offspring. PARTICIPANTS/MATERIALS, SETTING, METHODS MRT was achieved by spindle transfer between metaphase II oocytes from genetically divergent rhesus macaque populations. After fertilization of oocytes with sperm, heteroplasmic zygotes contained an unequal mixture of three parental genomes, i.e. donor (≥97%), maternal (≤3%), and paternal (≤0.1%) mitochondrial (mt)DNA. MRT monkeys were grown to adulthood and their development and general health was regularly monitored. Reproductive fitness of male and female MRT macaques was evaluated by time-mated breeding and production of live offspring. The relative contribution of donor, maternal, and paternal mtDNA was measured by whole mitochondrial genome sequencing in all organs and tissues of MRT animals and their offspring. MAIN RESULTS AND THE ROLE OF CHANCE Both male and female MRT rhesus macaques containing unequal mixture of three parental genomes, i.e. donor (≥97%), maternal (≤3%), and paternal (≤0.1%) mtDNA reached healthy adulthood, were fertile and most animals stably maintained the initial ratio of parental mtDNA heteroplasmy and donor mtDNA was transmitted from females to offspring. However, in one monkey out of four analyzed, initially negligible maternal mtDNA heteroplasmy levels increased substantially up to 17% in selected internal tissues and organs. In addition, two monkeys showed paternal mtDNA contribution up to 33% in selected internal tissues and organs. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Conclusions in this study were made on a relatively low number of MRT monkeys, and on only one F1 (first generation) female. In addition, monkey MRT involved two wildtype mtDNA haplotypes, but not disease-relevant variants. Clinical trials on children born after MRT will be required to fully determine safety and efficacy of MRT for humans. WIDER IMPLICATIONS OF THE FINDINGS Our data show that MRT is compatible with normal postnatal development including overall health and reproductive fitness in nonhuman primates without any detected adverse effects. ‘Mismatched’ donor mtDNA in MRT animals even from the genetically distant mtDNA haplotypes did not cause secondary mitochondrial dysfunction. However, carry-over maternal or paternal mtDNA contributions increased substantially in selected internal tissues / organs of some MRT animals implying the possibility of mtDNA mutation recurrence. STUDY FUNDING/COMPETING INTEREST(S) This work has been funded by the grants from the Burroughs Wellcome Fund, the National Institutes of Health (RO1AG062459 and P51 OD011092), National Research Foundation of Korea (2018R1D1A1B07043216) and Oregon Health & Science University institutional funds. The authors declare no competing interests.


2020 ◽  
Author(s):  
Joanna Malukiewicz ◽  
Reed A. Cartwright ◽  
Nelson H.A. Curi ◽  
Jorge A. Dergam ◽  
Claudia S. Igayara ◽  
...  

AbstractBackgroundCallithrix marmosets are a relatively young non-human primate radiation, whose phylogeny is not yet full resolved. These primates are naturally para- and allopatric, but three species with highly invasive potential have been introduced into the southeastern Brazilian Atlantic Forest by the pet trade. There, these species hybridize with each other and endangered, native congeners. We aimed in this study to reconstruct a robust Callithrix phylogeny and divergence time estimates, as well as identify autochthonous and allochthonous Callithrix mitogenome lineages across Brazil. We sequenced 49 mitogenomes from four species (C. aurita, C. geoffroyi, C. jacchus, C. penicillata) and anthropogenic hybrids (C. aurita x Callithrix sp., C. penicillata x C. jacchus, Callithrix sp. x Callithrix sp., C. penicillata x C. geoffroyi) via Sanger and whole genome sequencing. We combined these data with previously published Callithrix mtDNA genomes to analyze five Callithrix species in total.ResultsWe report the complete sequence and organization of the C. aurita mtDNA genome. Phylogenetic analyses showed that C. aurita was the first to diverge within Callithrix 3.54 million years ago (MYA), while C. jacchus and C. penicillata lineages diverged most recently 0.5 MYA as sister clades. MtDNA clades of C. aurita, C. geoffroyi, and C. penicillata show intraspecific geographic structure, but C. penicillata clades appear polyphyletic. Hybrids, which were identified by phenotype, possessed mainly C. penicillata or C. jacchus mtDNA haplotypes. The geographic origins of mtDNA haplotypes from hybrid and allochthonous Callithrix were broadly distributed across natural Callithrix ranges. Our phylogenetic results also evidence introgression of C. jacchus mtDNA into C. aurita.ConclusionOur robust Callithrix mitogenome phylogeny shows C. aurita lineages as basal and C. jacchus lineages among the most recent within Callithrix. We provide the first evidence that parental mtDNA lineages of anthropogenic hybrid and allochtonous marmosets are broadly distributed inside and outside of the Atlantic Forest. We also show evidence of cryptic hybridization between allochthonous Callithrix and autochthonous C. aurita. Our results encouragingly show that further development of genomic resources will allow to more clearly elucidate Callithrix evolutionary relationships and understand the dynamics of Callithrix anthropogenic introductions into the Brazilian Atlantic Forest.


2020 ◽  
Vol 10 (5) ◽  
pp. 1599-1612
Author(s):  
Richard Sejour ◽  
Roger A. Sanguino ◽  
Monika Mikolajczak ◽  
Walishah Ahmadi ◽  
Eugenia Villa-Cuesta

The endosymbiotic theory proposes that eukaryotes evolved from the symbiotic relationship between anaerobic (host) and aerobic prokaryotes. Through iterative genetic transfers, the mitochondrial and nuclear genomes coevolved, establishing the mitochondria as the hub of oxidative metabolism. To study this coevolution, we disrupt mitochondrial-nuclear epistatic interactions by using strains that have mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) from evolutionarily divergent species. We undertake a multifaceted approach generating introgressed Drosophila strains containing D. simulans mtDNA and D. melanogaster nDNA with Sirtuin 4 (Sirt4)-knockouts. Sirt4 is a nuclear-encoded enzyme that functions, exclusively within the mitochondria, as a master regulator of oxidative metabolism. We exposed flies to the drug rapamycin in order to eliminate TOR signaling, thereby compromising the cytoplasmic crosstalk between the mitochondria and nucleus. Our results indicate that D. simulans and D. melanogaster mtDNA haplotypes display opposite Sirt4-mediated phenotypes in the regulation of whole-fly oxygen consumption. Moreover, our data reflect that the deletion of Sirt4 rescued the metabolic response to rapamycin among the introgressed strains. We propose that Sirt4 is a suitable candidate for studying the properties of mitochondrial-nuclear epistasis in modulating mitochondrial metabolism.


2019 ◽  
Vol 375 (1790) ◽  
pp. 20190178 ◽  
Author(s):  
Venkatesh Nagarajan-Radha ◽  
Ian Aitkenhead ◽  
David J. Clancy ◽  
Steven L. Chown ◽  
Damian K. Dowling

Evolutionary theory proposes that maternal inheritance of mitochondria will facilitate the accumulation of mitochondrial DNA (mtDNA) mutations that are harmful to males but benign or beneficial to females. Furthermore, mtDNA haplotypes sampled from across a given species distribution are expected to differ in the number and identity of these ‘male-harming’ mutations they accumulate. Consequently, it is predicted that the genetic variation which delineates distinct mtDNA haplotypes of a given species should confer larger phenotypic effects on males than females (reflecting mtDNA mutations that are male-harming, but female-benign), or sexually antagonistic effects (reflecting mutations that are male-harming, but female-benefitting). These predictions have received support from recent work examining mitochondrial haplotypic effects on adult life-history traits in Drosophila melanogaster . Here, we explore whether similar signatures of male-bias or sexual antagonism extend to a key physiological trait—metabolic rate. We measured the effects of mitochondrial haplotypes on the amount of carbon dioxide produced by individual flies, controlling for mass and activity, across 13 strains of D. melanogaster that differed only in their mtDNA haplotype. The effects of mtDNA haplotype on metabolic rate were larger in males than females. Furthermore, we observed a negative intersexual correlation across the haplotypes for metabolic rate. Finally, we uncovered a male-specific negative correlation, across haplotypes, between metabolic rate and longevity. These results are consistent with the hypothesis that maternal mitochondrial inheritance has led to the accumulation of a sex-specific genetic load within the mitochondrial genome, which affects metabolic rate and that may have consequences for the evolution of sex differences in life history. This article is part of the theme issue ‘Linking the mitochondrial genotype to phenotype: a complex endeavour’.


2019 ◽  
Vol 30 (4) ◽  
pp. 807-813 ◽  
Author(s):  
Maria A. Kolosova ◽  
Lubov V. Getmantseva ◽  
Siroj Yu. Bakoev ◽  
Anatoly Yu. Kolosov ◽  
Nekruz F. Bakoev ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Philip Murunga ◽  
Grace Moraa Kennedy ◽  
Titus Imboma ◽  
Phillista Malaki ◽  
Daniel Kariuki ◽  
...  

We analyzed variations in 90 mitochondrial DNA (mtDNA) D-loop and heat shock protein 70 (HSP70) gene sequences from four populations of domesticated helmeted Guinea fowls (70 individuals) and 1 population of wild helmeted Guinea fowls (20 individuals) in Kenya in order to get information about their origin, genetic diversity, and traits associated with heat stress. 90 sequences were assigned to 25 distinct mtDNA and 4 HSP70 haplotypes. Most mtDNA haplotypes of the domesticated helmeted Guinea fowls were grouped into two main haplogroups, HgA and HgB. The wild population grouped into distinct mtDNA haplogroups. Two mtDNA haplotypes dominated across all populations of domesticated helmeted Guinea fowls: Hap2 and Hap4, while the dominant HSP70 haplotype found in all populations was CGC. Higher haplotype diversities were generally observed. The HSP70 haplotype diversities were low across all populations. The nucleotide diversity values for both mtDNA and HSP70 were generally low. Most mtDNA genetic variations occurred among populations for the three hierarchical categories considered while most variations in the HSP70 gene occurred among individuals within population. The lack of population structure among the domestic populations could suggest intensive genetic intermixing. The differentiation of the wild population may be due to a clearly distinct demographic history that shaped its genetic profile. Analysis of the Kenyan Guinea fowl population structure and history based on mtDNA D-loop variations and HSP70 gene functional polymorphisms complimented by archaeological and linguistic insight supports the hypothesis that most domesticated helmeted Guinea fowls in Kenya are related to the West African domesticated helmeted Guinea fowls. We recommend more molecular studies on this emerging poultry species with potential for poverty alleviation and food security against a backdrop of climate change in Africa.


2018 ◽  
Vol 54 (6) ◽  
pp. 687-697
Author(s):  
V. Balasanyan ◽  
E. Yavruyan ◽  
B. Somerová ◽  
A. Abramjan ◽  
E. Landová ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document