mtdna inheritance
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 7)

H-INDEX

11
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Hongying Sha ◽  
Zhao Ye ◽  
Zhen Ye ◽  
Sanbao Shi ◽  
Jianxin Pan ◽  
...  

Maternal transmission paradigm of mtDNA remains controversial in mammalian oogenesis. Germline-soma-to-oocyte communication by numerous transzonal nanotubes (TZTs) reminds whether intercellular mitochondrial transfer is associated with maternal inheritance. Here, we found that mouse oocytes egocentrically receive mitochondria via TZTs, which projected from germline-soma, to achieve 105 copies, instead of de novo synthesis of mtDNA subpopulation in growing oocytes. De novo assembled TZTs amongst germline-soma and oocytes accumulated mtDNA amounts of the oocytes in vitro. However, mitochondrial supplement from germline-soma gradually diminished along with oocyte growth and was terminated by meiosis resumption, in line with a decrease in the proportion of germline-soma with thriving mtDNA replication and FSH capture capability. Thus, germline-soma-to-oocyte mitochondrial transfer is responsible for mammalian mtDNA inheritance as well as oogenesis and aging.


2021 ◽  
Author(s):  
Daniel Corbi ◽  
Angelika Amon

AbstractFaithful inheritance of mitochondrial DNA (mtDNA) is crucial for cellular respiration/oxidative phosphorylation and mitochondrial membrane potential. However, how mtDNA is transmitted to progeny is not fully understood. We utilized hypersuppressive mtDNA, a class of respiratory deficient Saccharomyces cerevisiae mtDNA that is preferentially inherited over wild-type mtDNA (rho+), to uncover the factors governing mtDNA inheritance. We found that regions of rho+ mtDNA persisted after hypersuppressive takeover indicating that hypersuppressive preferential inheritance may partially be due to active destruction of rho+ mtDNA. From a multicopy suppression screen, we found that overexpression of putative mitochondrial RNA exonuclease PET127 reduced hypersuppressive biased inheritance. This suppression required PET127 binding to the mitochondrial RNA polymerase RPO41 but not PET127 exonuclease activity. A temperature-sensitive allele of RPO41 improved rho+ mtDNA inheritance relative to hypersuppressive mtDNA at semi-permissive temperatures revealing a previously unknown role for rho+ transcription in promoting hypersuppressive mtDNA inheritance.


Author(s):  
Giovanni Piccinini ◽  
Mariangela Iannello ◽  
Guglielmo Puccio ◽  
Federico Plazzi ◽  
Justin C Havird ◽  
...  

Abstract In Metazoa, 4 out of 5 complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mito-nuclear coevolution. Previous studies have supported co-adaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis”, a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations owing to less efficient mitochondrial selection. In this study we analysed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared to non-OXPHOS-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared to nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Faiz Rasul ◽  
Fan Zheng ◽  
Fenfen Dong ◽  
Jiajia He ◽  
Ling Liu ◽  
...  

AbstractThe endoplasmic reticulum-mitochondria encounter structure (ERMES) complex creates contact sites between the endoplasmic reticulum and mitochondria, playing crucial roles in interorganelle communication, mitochondrial fission, mtDNA inheritance, lipid transfer, and autophagy. The mechanism regulating the number of ERMES foci within the cell remains unclear. Here, we demonstrate that the mitochondrial membrane protein Emr1 contributes to regulating the number of ERMES foci. We show that the absence of Emr1 significantly decreases the number of ERMES foci. Moreover, we find that Emr1 interacts with the ERMES core component Mdm12 and colocalizes with Mdm12 on mitochondria. Similar to ERMES mutant cells, cells lacking Emr1 display defective mitochondrial morphology and impaired mitochondrial segregation, which can be rescued by an artificial tether capable of linking the endoplasmic reticulum and mitochondria. We further demonstrate that the cytoplasmic region of Emr1 is required for regulating the number of ERMES foci. This work thus reveals a crucial regulatory protein necessary for ERMES functions and provides mechanistic insights into understanding the dynamic regulation of endoplasmic reticulum-mitochondria communication.


2021 ◽  
Author(s):  
Liming Luo ◽  
Qiting Zou ◽  
Junneng Liang ◽  
Yongju Luo ◽  
Qinglang Yin ◽  
...  

Abstract BackgroundWhile tilapia are the second most farmed group of fish in the world, the Oreochromis niloticus (♀) × Oreochromis aureus (♂) hybrid is one of the most frequently observed tilapia crosses in China. Based on its conservative nature and maternal inheritance pattern, mitochondrial DNA is often used in kinship analysis. Evidence of paternal inheritance has been noted in some animal species. ResultsThe mitochondrial CoI and Cytb genes, and D-loop gene regions of Oreochromis niloticus and Oreochromis aureus fish were sequenced and aligned to their orthogonal and backcrossed offspring. As evidence of paternal mitochondria DNA inheritance was found, the whole mitochondrial genome was then sequenced. Results showed that in the Oreochromis niloticus (♀) × Oreochromis aureus (♂) hybrids, certain fish shared 92.88% of the maternal mitochondria genome, and 99.86% with the paternal mitochondria genome. This implied that there was paternal mtDNA inheritance. However, all Oreochromis niloticus (♂) × Oreochromis aureus (♀) hybrids had 100% identical mitochondria genome with their female parent. ConclusionsThe study showed that while paternal mtDNA inheritance occurred in the Oreochromis niloticus (♀) × Oreochromis aureus (♂) hybrid, this did not happen in Oreochromis niloticus (♂) × Oreochromis aureus (♀) offspring. This implies that in hybrid species, different hybridization combinations might provide an explanation for paternal mtDNA inheritance pattern.


2019 ◽  
Author(s):  
Hsin-Han Lee ◽  
Huei-Mien Ke ◽  
Chan-Yi Ivy Lin ◽  
Tracy J. Lee ◽  
Chia-Lin Chung ◽  
...  

AbstractComparative genomics of fungal mitochondrial genomes (mitogenomes) have revealed a remarkable pattern of rearrangement between and within major phyla owing to horizontal gene transfer (HGT) and recombination. The role of recombination was exemplified at a finer evolutionary time scale in basidiomycetes group of fungi as they display a diversity of mitochondrial DNA (mtDNA) inheritance patterns. Here, we assembled mitogenomes of six species from the Hymenochaetales order of basidiomycetes and examined 59 mitogenomes from two genetic lineages ofPyrrhoderma noxium. Gene order is largely colinear while intergene regions are major determinants of mitogenome size variation. Substantial sequence divergence was found in shared introns consistent with high HGT frequency observed in yeasts, but we also identified a rare case where an intron was retained in five species since speciation. In contrast to the hyperdiversity observed in nuclear genomes ofP. noxium, mitogenomes’ intraspecific polymorphisms at protein coding sequences are extremely low. Phylogeny based on introns revealed turnover as well as exchange of introns between two lineages. Strikingly, some strains harbor a mosaic origin of introns from both lineages. Analysis of intergenic sequence indicated substantial differences between and within lineages, and an expansion may be ongoing as a result of exchange between distal intergenes. These findings suggest that the evolution in mtDNAs is usually lineage specific but chimeric mitotypes are frequently observed, thus capturing the possible evolutionary processes shaping mitogenomes in a basidiomycete. The large mitogenome sizes reported in various basidiomycetes appear to be a result of interspecific reshuffling of intergenes.


2019 ◽  
Vol 19 (1) ◽  
pp. 61-69
Author(s):  
Sylwia Nisztuk-Pacek ◽  
Brygida Ślaska ◽  
Ludmiła Grzybowska-Szatkowska ◽  
Marek Babicz

AbstractThe aim of the study was to describe the mechanism of mitochondrial DNA inheritance in a group of farmed raccoon dogs. The study involved 354 individuals. Whole peripheral blood was the research material. DNA was isolated and PCR was performed for two fragments of mitochondrial genes: COX1 (cytochrome oxidase subunit 1 gene) and COX2 (cytochrome oxidase subunit 2 gene). The PCR products were sequenced and subjected to bioinformatics analyses. Three mitochondrial haplotypes were identified in the COX1 gene fragment and two in the COX2 gene fragment. The analysis of mtDNA inheritance in the paternal line confirmed the three cases of paternal mtDNA inheritance, i.e. the so-called “paternal leakage” in the analysed population. In two families, all offspring inherited paternal mitochondrial DNA, whereas in one family one descendant inherited paternal mtDNA and another one inherited maternal mtDNA. The lineage data indicated that one female which inherited maternal mitochondrial DNA transferred it onto the next generation. To sum up, the results of the study for the first time demonstrated the phenomenon of “paternal leakage” in farmed raccoon dogs, which facilitated description of mitochondrial DNA inheritance in the paternal line.


2015 ◽  
Vol 11 (10) ◽  
pp. 20150561 ◽  
Author(s):  
Michelle Alexander ◽  
Simon Y. W. Ho ◽  
Martyna Molak ◽  
Ross Barnett ◽  
Örjan Carlborg ◽  
...  

Mitochondrial genomes represent a valuable source of data for evolutionary research, but studies of their short-term evolution have typically been limited to invertebrates, humans and laboratory organisms. Here we present a detailed study of 12 mitochondrial genomes that span a total of 385 transmissions in a well-documented 50-generation pedigree in which two lineages of chickens were selected for low and high juvenile body weight. These data allowed us to test the hypothesis of time-dependent evolutionary rates and the assumption of strict maternal mitochondrial transmission, and to investigate the role of mitochondrial mutations in determining phenotype. The identification of a non-synonymous mutation in ND4L and a synonymous mutation in CYTB , both novel mutations in Gallus , allowed us to estimate a molecular rate of 3.13 × 10 −7 mutations/site/year (95% confidence interval 3.75 × 10 −8 –1.12 × 10 −6 ). This is substantially higher than avian rate estimates based upon fossil calibrations. Ascertaining which of the two novel mutations was present in an additional 49 individuals also revealed an instance of paternal inheritance of mtDNA. Lastly, an association analysis demonstrated that neither of the point mutations was strongly associated with the phenotypic differences between the two selection lines. Together, these observations reveal the highly dynamic nature of mitochondrial evolution over short time periods.


Genome ◽  
2015 ◽  
Vol 58 (10) ◽  
pp. 423-431 ◽  
Author(s):  
Sophie Breton ◽  
Donald T. Stewart

Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.


Sign in / Sign up

Export Citation Format

Share Document