scholarly journals Revisiting the Trivers-Willard theory on birth sex ratio bias: Role of paternal condition in a Malagasy primate

PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0209640 ◽  
Author(s):  
Martine Perret
Keyword(s):  
Evolution ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 1049-1055 ◽  
Author(s):  
Steven Freedberg ◽  
Michael J. Wade

2018 ◽  
Vol 329 (6-7) ◽  
pp. 373-381 ◽  
Author(s):  
Nicola J. Nelson ◽  
Susan N. Keall ◽  
Jeanine M. Refsnider ◽  
Anna L. Carter

2007 ◽  
Vol 19 (7) ◽  
pp. 831 ◽  
Author(s):  
W. L. Linklater

Many sex allocation mechanisms are proposed but rarely have researchers considered and tested more than one at a time. Four facultative birth sex ratio (BSR) adjustment mechanisms are considered: (1) hormone-induced conception bias; (2) sex-differential embryo death from excess glucose metabolism; (3) sex-differential embryo death from embryo–uterine developmental asynchrony; and (4) pregnancy hormone suppression and resource deprivation. All mechanisms could be switched on by the corticoadrenal stress response. A total of 104 female rhinoceroses (Rhinocerotidae), translocated from 1961 to 2004 at different stages of gestation or conceived soon after arrival in captivity, were used to test for a reversal in BSR bias as evidence for the action of multiple sex-allocation mechanisms. Translocation induced a statistically significant BSR reversal between early gestation (86% male births from 0 to 0.19 gestation) and mid-gestation (38% male from 0.2 to 0.79 gestation). Captivity also induced a strongly male-biased (67% male) BSR for conceptions after arrival in captivity. The results indicate the action of at least two sex-allocation mechanisms operating in sequence, confirm the important role of sex-differential embryo death around implantation and of stress in sex allocation, and lend support to suggestions that sex-differential glucose metabolism by the preimplantation embryo likely plays a role in facultative BSR adjustment.


Evolution ◽  
1995 ◽  
Vol 49 (6) ◽  
pp. 1119-1124
Author(s):  
Peter D. Taylor
Keyword(s):  

2007 ◽  
Vol 6 (4) ◽  
pp. 431-456
Author(s):  
Adansi Amankwaa

AbstractThis article explores how family structure and domicility influences offspring sex ratio bias, specifically living arrangements of husband in polygynous unions. Data from three Ghana Demographic and Health Surveys were used to examine the relationship between family structure and offspring sex ratio at birth, something that previous studies have not been able to do. This study estimate models of sex ratio offspring if the wives live together with husband present and wives live in separate dwellings and are visited by husband in turn. The results suggest that within polygynous marriages there are more male births, especially when husbands reside in the same dwelling as wives, than when husbands reside in separate dwellings from their wives. The analyses show that offspring sex ratio is related to the structure of living arrangement of husbands in polygynous unions. Indeed, the findings suggest that living arrangements and family structure among humans are important factors in predicting offspring sex ratio bias.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Laurent Mottron ◽  
Pauline Duret ◽  
Sophia Mueller ◽  
Robert D Moore ◽  
Baudouin Forgeot d’Arc ◽  
...  

2014 ◽  
Vol 10 (5) ◽  
pp. 20140159 ◽  
Author(s):  
B. Vanthournout ◽  
K. Deswarte ◽  
H. Hammad ◽  
T. Bilde ◽  
B. Lambrecht ◽  
...  

Producing equal amounts of male and female offspring has long been considered an evolutionarily stable strategy. Nevertheless, exceptions to this general rule (i.e. male and female biases) are documented in many taxa, making sex allocation an important domain in current evolutionary biology research. Pinpointing the underlying mechanism of sex ratio bias is challenging owing to the multitude of potential sex ratio-biasing factors. In the dwarf spider, Oedothorax gibbosus , infection with the bacterial endosymbiont Wolbachia results in a female bias. However, pedigree analysis reveals that other factors influence sex ratio variation. In this paper, we investigate whether this additional variation can be explained by the unequal production of male- and female-determining sperm cells during sperm production. Using flow cytometry, we show that males produce equal amounts of male- and female-determining sperm cells; thus bias in sperm production does not contribute to the sex ratio bias observed in this species. This demonstrates that other factors such as parental genes suppressing endosymbiont effects and cryptic female choice might play a role in sex allocation in this species.


Sign in / Sign up

Export Citation Format

Share Document