scholarly journals Analysis of the mutant selection window and killing of Mycoplasma hyopneumoniae for doxycycline, tylosin, danofloxacin, tiamulin, and valnemulin

PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0220350
Author(s):  
Zilong Huang ◽  
Chunxiao Mao ◽  
Yanzhe Wei ◽  
Xiaoyan Gu ◽  
Qinren Cai ◽  
...  
2019 ◽  
Author(s):  
Zilong Huang ◽  
Chunxiao Mao ◽  
Yanzhe Wei ◽  
Xiaoyan Gu ◽  
Qinren Cai ◽  
...  

AbstractMycoplasma hyopneumoniae is the major pathogenic microorganism causing enzootic pneumonia in pigs. With increasing resistance of M. hyopneumoniae to conventional antibiotics, treatment is becoming complicated. Herein, we investigated the mutant selection window (MSW) of doxycycline, tylosin, danofloxacin, tiamulin, and valnemulin for treating M. hyopneumoniae strain (ATCC 25934) to determine the likelihood of promoting resistance with continued use of these antibiotics. Minimum inhibitory concentration (MIC) values against M. hyopneumoniae were determined for each antimicrobial agent and ranged from 105 colony-forming units (CFU)/mL to 109 CFU/mL based on microdilution broth and agar dilution methods. The minimal concentration inhibiting colony formation by 99% (MIC99) and the mutant prevention concentration (MPC) were determined by the agar dilution method with three inoculum sizes. Antimicrobial killing was determined based on MIC99 and MPC values for all five agents. MIC values ranged from 0.001 to 0.25 μg/mL based on the microdilution broth method, and from 0.008 to 1.0 μg/mL based on the agar dilution method. MPC values ranged from 0.0016 to 10.24 μg/mL. MPC/MIC99 values were ordered tylosin >doxycycline >danofloxacin >tiamulin >valnemulin. MPC achieved better bactericidal action than MIC99. Based on pharmacodynamic analyses, danofloxacin, tylosin, and doxycycline are more likely to select resistant mutants than tiamulin and valnemulin.


2020 ◽  
Author(s):  
Khaled El Khatib ◽  
Ribal Aby Hadeer ◽  
Anis Saad ◽  
Aline Kalaydjian ◽  
Elie Fayad ◽  
...  

Abstract Objective: This study investigated the antibacterial activity of Ilex paraguariensis extracts against 32 different strains of non-typhoidal Salmonella (NTS) through the determination of the Minimum Inhibitory Concentration (MIC), Mutant Prevention Concentration (MPC), Mutant Selection Window (MSW), and the detection of virulence genes by multiplex PCR assays. Results: The MIC values of Ilex paraguariensis against Salmonella spp. strains varied between 0.78 mg/ml and 6.25 mg/ml with a MIC 90 of 3.12 mg/ml. The highest MPC in this study was 48 mg/ml yielding a Mutant Selection Window of 41.75 mg/ml. The MSW values of the remaining strains varied between 1.56 and 8.87 mg/ml. Genes of pathogenicity detected in Salmonella spp. isolates were most commonly the stn, sdiA, invA, sopB, invH, and sopE genes. The antibacterial activity of Yerba Mate extracts was not affected by the antimicrobial resistance patterns or pathogenicity genes expressed. More work is needed to identify the active antibacterial compound(s) responsible for the antibacterial activity.


2004 ◽  
Vol 38 (10) ◽  
pp. 1675-1682 ◽  
Author(s):  
Benjamin J Epstein ◽  
John G Gums ◽  
Karl Drlica

Sign in / Sign up

Export Citation Format

Share Document