scholarly journals Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate

PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0221837
Author(s):  
Paula Tucci ◽  
Madelón Portela ◽  
Carlos Rivas Chetto ◽  
Gualberto González-Sapienza ◽  
Mónica Marín
2007 ◽  
Vol 35 (1) ◽  
pp. 41-50 ◽  
Author(s):  
C. Benabdesselem ◽  
M. R. Barbouche ◽  
M. A. Jarboui ◽  
K. Dellagi ◽  
J. L. Ho ◽  
...  

2008 ◽  
Vol 76 (5) ◽  
pp. 2249-2255 ◽  
Author(s):  
Ying Wu ◽  
Joshua S. Woodworth ◽  
Daniel S. Shin ◽  
Sheldon Morris ◽  
Samuel M. Behar

ABSTRACT The 10-kDa culture filtrate protein (CFP-10) and 6-kDa early secretory antigen of T cells (ESAT-6) are secreted in abundance by Mycobacterium tuberculosis and are frequently recognized by T cells from infected people. The genes encoding these proteins have been deleted from the genome of the vaccine strain Mycobacterium bovis bacillus Calmette-Guérin (BCG), and it is hypothesized that these proteins are important targets of protective immunity. Indeed, vaccination with ESAT-6 elicits protective CD4+ T cells in C57BL/6 mice. We have previously shown that M. tuberculosis infection of C3H mice elicits CFP-10-specific CD8+ and CD4+ T cells. Here we demonstrate that immunization with a CFP-10 DNA vaccine stimulates a specific T-cell response only to the H-2Kk-restricted epitope CFP-1032-39. These CFP-1032-39-specific CD8+ cells undergo a rapid expansion and accumulate in the lung following challenge of immunized mice with aerosolized M. tuberculosis. Protective immunity is induced by CFP-10 DNA vaccination as measured by a CFU reduction in the lung and spleen 4 and 8 weeks after challenge with M. tuberculosis. These data demonstrate that CFP-10 is a protective antigen and that CFP-1032-39-specific CD8+ T cells elicited by vaccination are sufficient to mediate protection against tuberculosis.


2004 ◽  
Vol 72 (6) ◽  
pp. 3161-3170 ◽  
Author(s):  
John S. Spencer ◽  
Hee Jin Kim ◽  
Angela M. Marques ◽  
Mercedes Gonzalez-Juarerro ◽  
Monica C. B. S. Lima ◽  
...  

ABSTRACT Culture filtrate protein 10 (CFP-10) from Mycobacterium tuberculosis is a well-characterized immunodominant 10-kDa protein antigen known to elicit a very potent early gamma interferon response in T cells from M. tuberculosis-infected mice and humans. The sequence of the Mycobacterium leprae homologue of CFP-10 shows only 40% identity (60% homology) at the protein level with M. tuberculosis CFP-10 and thus has the potential for development as a T- or B-cell reactive antigen for specific diagnosis of leprosy. Antisera raised in mice or rabbits against recombinant M. leprae and M. tuberculosis CFP-10 proteins reacted only with homologous peptides from arrays of overlapping synthetic peptides, indicating that there was no detectable cross-reactivity at the antibody level. Sera from leprosy and tuberculosis patients were also specific for the homologous protein or peptides and showed distinct patterns of recognition for either M. leprae or M. tuberculosis CFP-10 peptides. At the cellular level, only 2 of 45 mouse T-cell hybridomas raised against either M. leprae or M. tuberculosis CFP-10 displayed a cross-reactive response against the N-terminal heterologous CFP-10 peptide, the region that exhibits the highest level of identity in the two proteins; however, the majority of peptide epitopes recognized by mouse T-cell hybridomas specific for each protein did not cross-react with heterologous peptides. Coupled with the human serology data, these results raise the possibility that peptides that could be used to differentiate infections caused by these two related microorganisms could be developed. Immunohistochemical staining of sections of M. leprae-infected nude mouse footpads resulted in strongly positive staining in macrophages and dendritic cells, as well as weaker staining in extracellular areas, suggesting that M. leprae CFP-10, like its homologue in M. tuberculosis, is a secreted protein.


Sign in / Sign up

Export Citation Format

Share Document