scholarly journals Health Technology Assessment of a new water quality monitoring technology: Impact of automation, digitalization and remoteness in dialysis units

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247450
Author(s):  
Borja García-Lorenzo ◽  
Carla Fernández-Barceló ◽  
Francisco Maduell ◽  
Laura Sampietro-Colom

Background Water quality monitoring at the dialysis units (DU) is essential to ensure an appropriate dialysis fluid quality and guarantee an optimal and safe dialysis treatment to patients. This paper aims to evaluate the effectiveness, economic and organizational impact of automation, digitalization and remote water quality monitoring, through a New Water Technology (NWT) at a hospital DU to produce dialysis water, compared to a Conventional Water Technology (CWT). Methods A before-and-after study was carried out at the Hospital Clínic Barcelona. Data on CWT was collected during 1-year (control) and 7-month for the NWT (case). Data on water quality, resource use and unit cost were retrospective and prospectively collected. A comparative effectiveness analysis on the compliance rate of quality water parameters with the international guidelines between the NWT and the CWT was conducted. This was followed by a cost-minimization analysis and an organizational impact from the hospital perspective. An extensive deterministic sensitivity analysis was also performed. Results The NWT compared to the CWT showed no differences on effectiveness measured as the compliance rate on international requirements on water quality (100% vs. 100%), but the NWT yielded savings of 3,599 EUR/year compared to the CWT. The NWT offered more data accuracy (daily measures: 6 vs. 1 and missing data: 0 vs. 20 days/year), optimization of the DU employees’ workload (attendance to DU: 4 vs. 19 days/month) and workflow, through the remote and continuous monitoring, reliability of data and process regarding audits for quality control. Conclusions While the compliance of international recommendations on continuous monitoring was performed with the CWT, the NWT was efficient compared to the CWT, mainly due to the travel time needed by the technical operator to attend the DU. These results were scalable to other economic contexts. Nonetheless, they should be taken with caution either when the NWT equipment/maintenance cost are largely increased, or the workforce involvement is diminished.

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3758
Author(s):  
Hsing-Cheng Yu ◽  
Ming-Yang Tsai ◽  
Yuan-Chih Tsai ◽  
Jhih-Jyun You ◽  
Chun-Lin Cheng ◽  
...  

Recently, environmental pollution resulting from industrial waste has been emerging in an endless stream. The industrial waste contains chemical materials, heavy metal ions, and other toxic materials. Once the industrial waste is discharged without standards, it might lead to water or environmental pollution. Hence, it has become more important to provide evidence-based water quality monitoring. The use of a multifunctional miniaturized water quality monitoring system (WQMS), that contains continuous monitoring, water quality monitoring, and wireless communication applications, simultaneously, is infrequent. Thus, electrodes integrated with polydimethylsiloxane flow channels were presented in this study to be a compound sensor, and the sensor can be adopted concurrently to measure temperature, pH, electrical conductivity, and copper ion concentration, whose sensitivities are determined as 0.0193 °C/mV, −0.0642 pH/mV, 1.1008 mS/V·cm (from 0 mS/cm to 2 mS/cm) and 1.1975 mS/V·cm (from 2 mS/cm to 5.07 mS/cm), and 0.0111 ppm/mV, respectively. A LoRa shield connected into the system could provide support as a node of long range wide area network (LoRaWAN) for wireless communication application. As mentioned above, the sensors, LoRa, and circuit have been integrated in this study to a continuous monitoring system, WQMS. The advantages of the multifunctional miniaturized WQMS are low cost, small size, easy maintenance, continuous sampling and long-term monitoring for many days. Every tested period is 180 min, and the measured rate is 5 times per 20 min. The feedback signals of the miniaturized WQMS and measured values of the instrument were obtained to compare the difference. In the measured results at three different place-to-place locations the errors of electrical conductivity are 0.051 mS/cm, 0.106 mS/cm, and 0.092 mS/cm, respectively. The errors of pH are 0.68, 0.87, and 0.56, respectively. The errors of temperature are 0.311 °C, 0.252 °C, and 0.304 °C, respectively. The errors of copper ion concentration are 0.051 ppm, 0.058 ppm, 0.050 ppm, respectively.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772092982
Author(s):  
Fan-Lun Chen ◽  
Bo-Chieh Yang ◽  
Shu-Yi Peng ◽  
Tzu-Chi Lin

In Taiwan, where residential and industrial areas are in close proximity, finding ways to effectively continuous monitor and manage water quality is an essential issue. This study established a total solution for an Internet of things water quality monitoring network that integrates domestic miniaturized water quality monitoring sensors for real-time transport data of pH, temperature, conductivity, chemical oxygen demand, and copper ions. The data will be used to establish an analysis model based on continuous monitoring of the nation’s background concentration. We designed an automatic continuous monitoring and early warning analysis module for automatic analysis of environmental and instrumental anomalies for decision makers, a “pollution source analysis module” utilizing static and dynamic cross-environment data to swiftly trace upstream pollution sources, and a “pollution hotspot analysis module” to evaluate the impact area of pollutants, and immediate response measures to achieve early warning and swift evaluation for the prevention of water pollution. To do this, we installed 100 domestic miniaturized water monitoring devices in Taoyuan City for testing the solution. We found that the establishment of an Internet of things environment analysis and response model integrated with cross-environment analysis can be applied in water quality monitoring and management to assure improved environmental quality.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Heru Dwi Wahjono

Ciliwung and Cisadane are two main river from one of the priorities water shed set by the Indonesian government. This determination is based on one of which was the need for water resource management in Ciliwung-Casadane is already getting damaged. Ministry of Environment and Forests (KLHK) makes Ciliwung-Cisadane one of the targets of pollution control through the application of online monitoring technology for quality water. This online monitoring technology is required to obtain a continuous monitoring data to prove the pollution by industries in this watershed area. The system applied is an online and realtime water quality monitoring system based on GSM technology. In this paper will discuss the installation process, the monitoring results, and the obstacles encountered. Keywords: Priorities watershed, Ciliwung-Casadane Watershed, online monitoring technology, online and realtime data.


2013 ◽  
Vol 133 (8) ◽  
pp. 1616-1624
Author(s):  
Zu Soh ◽  
Kentaro Miyamoto ◽  
Akira Hirano ◽  
Toshio Tsuji

2016 ◽  
Vol 15 (5) ◽  
pp. 1069-1074 ◽  
Author(s):  
Violeta-Monica Radu ◽  
Alexandru Anton Ivanov ◽  
Petra Ionescu ◽  
Gyorgy Deak ◽  
Marian Tudor

Sign in / Sign up

Export Citation Format

Share Document