scholarly journals A hybrid differential evolution based on gaining‑sharing knowledge algorithm and harris hawks optimization

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250951
Author(s):  
Xuxu Zhong ◽  
Meijun Duan ◽  
Xiao Zhang ◽  
Peng Cheng

Differential evolution (DE) is favored by scholars for its simplicity and efficiency, but its ability to balance exploration and exploitation needs to be enhanced. In this paper, a hybrid differential evolution with gaining-sharing knowledge algorithm (GSK) and harris hawks optimization (HHO) is proposed, abbreviated as DEGH. Its main contribution lies are as follows. First, a hybrid mutation operator is constructed in DEGH, in which the two-phase strategy of GSK, the classical mutation operator “rand/1” of DE and the soft besiege rule of HHO are used and improved, forming a double-insurance mechanism for the balance between exploration and exploitation. Second, a novel crossover probability self-adaption strategy is proposed to strengthen the internal relation among mutation, crossover and selection of DE. On this basis, the crossover probability and scaling factor jointly affect the evolution of each individual, thus making the proposed algorithm can better adapt to various optimization problems. In addition, DEGH is compared with eight state-of-the-art DE algorithms on 32 benchmark functions. Experimental results show that the proposed DEGH algorithm is significantly superior to the compared algorithms.

Author(s):  
Esra'a Alkafaween ◽  
Ahmad B. A. Hassanat

Genetic algorithm (GA) is an efficient tool for solving optimization problems by evolving solutions, as it mimics the Darwinian theory of natural evolution. The mutation operator is one of the key success factors in GA, as it is considered the exploration operator of GA. Various mutation operators exist to solve hard combinatorial problems such as the TSP. In this paper, we propose a hybrid mutation operator called "IRGIBNNM", this mutation is a combination of two existing mutations; a knowledgebased mutation, and a random-based mutation. We also improve the existing “select best mutation” strategy using the proposed mutation. We conducted several experiments on twelve benchmark Symmetric traveling salesman problem (STSP) instances. The results of our experiments show the efficiency of the proposed mutation, particularly when we use it with some other mutations.


2014 ◽  
Vol 5 (4) ◽  
pp. 45-64 ◽  
Author(s):  
Chatkaew Jariyatantiwait ◽  
Gary G. Yen

Differential evolution is often regarded as one of the most efficient evolutionary algorithms to tackle multiobjective optimization problems. The key to success of any multiobjective evolutionary algorithms (MOEAs) is maintaining a delicate balance between exploration and exploitation throughout the evolution process. In this paper, the authors propose a Fuzzy-based Multiobjective Differential Evolution (FMDE) that uses performance metrics, specifically hypervolume, spacing, and maximum spread, to measure the state of the evolution process. The authors apply the fuzzy inference rules to these metrics in order to dynamically adjust the associated control parameters of a chosen mutation strategy used in this algorithm. One parameter controls the degree of greedy or exploitation, while another regulates the degree of diversity or exploration of the reproduction phase. Therefore, the authors can appropriately adjust the degree of exploration and exploitation through performance feedback. The performance of FMDE is evaluated on well-known ZDT and DTLZ test suites. The results validate that the proposed algorithm is competitive with respect to chosen state-of-the-art MOEAs.


2011 ◽  
Vol 15 (10) ◽  
pp. 2041-2055 ◽  
Author(s):  
Karthik Sindhya ◽  
Sauli Ruuska ◽  
Tomi Haanpää ◽  
Kaisa Miettinen

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Wang ◽  
Wenjun Wang ◽  
Zhihua Cui ◽  
Hui Sun ◽  
Shahryar Rahnamayan

Differential evolution (DE) is a population-based stochastic search algorithm which has shown a good performance in solving many benchmarks and real-world optimization problems. Individuals in the standard DE, and most of its modifications, exhibit the same search characteristics because of the use of the same DE scheme. This paper proposes a simple and effective heterogeneous DE (HDE) to balance exploration and exploitation. In HDE, individuals are allowed to follow different search behaviors randomly selected from a DE scheme pool. Experiments are conducted on a comprehensive set of benchmark functions, including classical problems and shifted large-scale problems. The results show that heterogeneous DE achieves promising performance on a majority of the test problems.


2015 ◽  
Vol 24 (06) ◽  
pp. 1550023 ◽  
Author(s):  
Mahshid Mahdaviani ◽  
Javidan Kazemi Kordestani ◽  
Alireza Rezvanian ◽  
Mohammad Reza Meybodi

Many engineering optimization problems do not standard mathematical techniques, and cannot be solved using exact algorithms. Evolutionary algorithms have been successfully used for solving such optimization problems. Differential evolution is a simple and efficient population-based evolutionary algorithm for global optimization, which has been applied in many real world engineering applications. However, the performance of this algorithm is sensitive to appropriate choice of its parameters as well as its mutation strategy. In this paper, we propose two different underlying classes of learning automata based differential evolution for adaptive selection of crossover probability and mutation strategy in differential evolution. In the first class, genomes of the population use the same mutation strategy and crossover probability. In the second class, each genome of the population adjusts its own mutation strategy and crossover probability parameter separately. The performance of the proposed methods is analyzed on ten benchmark functions from CEC 2005 and one real-life optimization problem. The obtained results show the efficiency of the proposed algorithms for solving real-parameter function optimization problems.


2014 ◽  
Vol 31 (7) ◽  
pp. 1198-1220 ◽  
Author(s):  
Gai-Ge Wang ◽  
Amir Hossein Gandomi ◽  
Xin-She Yang ◽  
Amir Hossein Alavi

Purpose – Meta-heuristic algorithms are efficient in achieving the optimal solution for engineering problems. Hybridization of different algorithms may enhance the quality of the solutions and improve the efficiency of the algorithms. The purpose of this paper is to propose a novel, robust hybrid meta-heuristic optimization approach by adding differential evolution (DE) mutation operator to the accelerated particle swarm optimization (APSO) algorithm to solve numerical optimization problems. Design/methodology/approach – The improvement includes the addition of DE mutation operator to the APSO updating equations so as to speed up convergence. Findings – A new optimization method is proposed by introducing DE-type mutation into APSO, and the hybrid algorithm is called differential evolution accelerated particle swarm optimization (DPSO). The difference between DPSO and APSO is that the mutation operator is employed to fine-tune the newly generated solution for each particle, rather than random walks used in APSO. Originality/value – A novel hybrid method is proposed and used to optimize 51 functions. It is compared with other methods to show its effectiveness. The effect of the DPSO parameters on convergence and performance is also studied and analyzed by detailed parameter sensitivity studies.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Rasim M. Alguliev ◽  
Ramiz M. Aliguliyev ◽  
Chingiz A. Mehdiyev

Extractive multidocument summarization is modeled as a modifiedp-median problem. The problem is formulated with taking into account four basic requirements, namely, relevance, information coverage, diversity, and length limit that should satisfy summaries. To solve the optimization problem a self-adaptive differential evolution algorithm is created. Differential evolution has been proven to be an efficient and robust algorithm for many real optimization problems. However, it still may converge toward local optimum solutions, need to manually adjust the parameters, and finding the best values for the control parameters is a consuming task. In the paper is proposed a self-adaptive scaling factor in original DE to increase the exploration and exploitation ability. This paper has found that self-adaptive differential evolution can efficiently find the best solution in comparison with the canonical differential evolution. We implemented our model on multi-document summarization task. Experiments have shown that the proposed model is competitive on the DUC2006 dataset.


Sign in / Sign up

Export Citation Format

Share Document