scholarly journals Comparison of enteric methane yield and diversity of ruminal methanogens in cattle and buffaloes fed on the same diet

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256048
Author(s):  
P. K. Malik ◽  
S. Trivedi ◽  
A. Mohapatra ◽  
A. P. Kolte ◽  
V. Sejian ◽  
...  

An in vivo study was conducted to compare the enteric methane emissions and diversity of ruminal methanogens in cattle and buffaloes kept in the same environment and fed on the same diet. Six cattle and six buffaloes were fed on a similar diet comprising Napier (Pennisetum purpureum) green grass and concentrate in 70:30. After 90 days of feeding, the daily enteric methane emissions were quantified by using the SF6 technique and ruminal fluid samples from animals were collected for the diversity analysis. The daily enteric methane emissions were significantly greater in cattle as compared to buffaloes; however, methane yields were not different between the two species. Methanogens were ranked at different taxonomic levels against the Rumen and Intestinal Methanogen-Database. The archaeal communities in both host species were dominated by the phylum Euryarchaeota; however, Crenarchaeota represented <1% of the total archaea. Methanogens affiliated with Methanobacteriales were most prominent and their proportion did not differ between the two hosts. Methanomicrobiales and Methanomassillicoccales constituted the second largest group of methanogens in cattle and buffaloes, respectively. Methanocellales (Methanocella arvoryza) were exclusively detected in the buffaloes. At the species level, Methanobrevibacter gottschalkii had the highest abundance (55–57%) in both the host species. The relative abundance of Methanobrevibacter wolinii between the two hosts differed significantly. Methanosarcinales, the acetoclastic methanogens were significantly greater in cattle than the buffaloes. It is concluded that the ruminal methane yield in cattle and buffaloes fed on the same diet did not differ. With the diet used in this study, there was a limited influence (<3.5%) of the host on the structure of the ruminal archaea community at the species level. Therefore, the methane mitigation strategies developed in either of the hosts should be effective in the other. Further studies are warranted to reveal the conjunctive effect of diet and geographical locations with the host on ruminal archaea community composition.

2016 ◽  
Vol 56 (3) ◽  
pp. 451 ◽  
Author(s):  
Xuezhao Sun ◽  
David Pacheco ◽  
Dongwen Luo

A series of experiments was conducted in New Zealand to evaluate the potential of forage brassicas for mitigation of enteric methane emissions. Experiments involved sheep and cattle fed winter and summer varieties of brassica forage crops. In the sheep-feeding trials, it was demonstrated that several species of forage brassicas can result, to a varying degree, in a lower methane yield (g methane per kg of DM intake) than does ryegrass pasture. Pure forage rape fed as a winter crop resulted in 37% lower methane yields than did pasture. Increasing the proportion of forage rape in the diet of sheep fed pasture linearly decreased methane yield. Feeding forage rape to cattle also resulted in 44% lower methane yield than did feeding pasture. In conclusion, reductions in methane emission are achievable by feeding forage brassicas, especially winter forage rape, to sheep and cattle. Investigating other aspects of these crops is warranted to establish their value as a viable mitigation tool in pastoral farming.


2016 ◽  
Vol 56 (7) ◽  
pp. 1017 ◽  
Author(s):  
Peter J. Moate ◽  
Matthew H. Deighton ◽  
S. Richard O. Williams ◽  
Jennie E. Pryce ◽  
Ben J. Hayes ◽  
...  

This review examines research aimed at reducing enteric methane emissions from the Australian dairy industry. Calorimeter measurements of 220 forage-fed cows indicate an average methane yield of 21.1 g methane (CH4)/kg dry matter intake. Adoption of this empirical methane yield, rather than the equation currently used in the Australian greenhouse gas inventory, would reduce the methane emissions attributed to the Australian dairy industry by ~10%. Research also indicates that dietary lipid supplements and feeding high amounts of wheat substantially reduce methane emissions. It is estimated that, in 1980, the Australian dairy industry produced ~185 000 t of enteric methane and total enteric methane intensity was ~33.6 g CH4/kg milk. In 2010, the estimated production of enteric methane was 182 000 t, but total enteric methane intensity had declined ~40% to 19.9 g CH4/kg milk. This remarkable decline in methane intensity and the resultant improvement in the carbon footprint of Australian milk production was mainly achieved by increased per-cow milk yield, brought about by the on-farm adoption of research findings related to the feeding and breeding of dairy cows. Options currently available to further reduce the carbon footprint of Australian milk production include the feeding of lipid-rich supplements such as cottonseed, brewers grains, cold-pressed canola, hominy meal and grape marc, as well as feeding of higher rates of wheat. Future technologies for further reducing methane emissions include genetic selection of cows for improved feed conversion to milk or low methane intensity, vaccines to reduce ruminal methanogens and chemical inhibitors of methanogenesis.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 447-448
Author(s):  
Mariana E Garcia-Ascolani ◽  
Tessa M Schulmeister ◽  
Federico Tarnonsky ◽  
Federico Podversich ◽  
Gleise Medeiros da Silva ◽  
...  

Abstract An experiment was conducted to evaluate the effect of supplementing twenty Angus crossbred steers with avian-derived polyclonal antibody preparations (PAP) against the ruminal methanogen Methanobrevibacter ruminantium M1 on in vivo methane production, using the sulfur hexafluoride (SF6) tracer technique (Johnson et al., 1994). Steers were fed chopped bermudagrass hay (BGH) ad libitum and 0.7 kg d-1 of corn gluten feed. The experiment followed a change-over design. Treatments were 1) supplementation of 3 mL d-1 of PAP against M. ruminantium M1 (PAP-M1), and 2) supplementation of 3 mL d-1 of a non-immunized egg product (CON). Individual BGH intake was recorded using an electronic radio-frequency monitoring system (GrowSafe System Ltd., Airdrie, Alberta, Canada). There was a 14-d adaptation period to the feeding regime, with no PAP supplementation, followed by an 18-d treatment period. Steers were dosed with brass permeation tubes with a known release rate of SF6 on d 7 of treatment period. Enteric methane emissions were sampled from d 13 to 18 of the treatment period, into N-rinsed pre-evacuated U-shaped polyvinyl chloride canisters (2 L) through a capillary tube. Methane emissions were averaged per animal within period. Data were analyzed as a change-over design using a model with fixed effects of order, period, and treatment and random effect of steer within order. Dry matter intake (DMI) was not different (P = 0.44) between treatments. Methane emissions, expressed as grams per day (P = 0.86), as grams per kilogram of DMI (P = 0.78), or in terms of methane emission factors (Ym, P = 0.78) were not different between PAP-M1 and CON treatments. Supplementation of steers with PAP against M. ruminantium M1 did not decrease enteric methane emissions. Based on preliminary ex situ trials, evaluation of different doses and combinations of PAP against other methanogenic species warrant further investigation.


Author(s):  
Alireza Bayat ◽  
Kevin J. Shingfield

Since ruminants are capable of utilizing fibrous feeds not digested by mono-gastrics, they represent a valuable natural resource for meeting future increases in global food supply. Ruminants have both local (nitrogen and phosphorus pollutions) and global (greenhouse gases, GHG) environmental footprints. It is estimated that the livestock sector is responsible for 18% of global anthropogenic GHG emissions. Losses of methane represent 30 to 50% of total GHG from livestock production, with the contribution from ruminants accounting for about 80%. Due to the concerns of increases in GHG emissions into the environment and potential effects on global warming, there is a need to develop strategies to lower methane emissions from ruminants as part of an overall requirement to improve the sustainability of ruminant food production systems. Methane is produced as a by-product of anaerobic fermentation in the reticulo-rumen, largely due to the activity of methanogenic archaea. Recent research has focused on the potential of novel feed ingredients (probiotics, ionophores, acetogen-based inoculants, bacteriocins, organic acids and plant extracts) or vaccines to lower hydrogen production and/or increase the transfer and utilization of metabolic hydrogen in the production of end-products other than methane in the rumen. Research to date has provided evidence that dietary supplements of plant or marine oils, oilseeds, specific fatty acids and condensed tannins, as well as defaunation, increases in production level or decreases in the proportion of forage in the diet may lower enteric methane production. Even though dietary lipid supplements can be used to lower methane output, in high amounts a decrease in intake and milk production can be expected. While further investigations have demonstrated the efficacy of specific agents on methanogenesis in vitro, the effects have not been substantiated in vivo. Altering the ratio of H2 /non-H2 producing fibrolytic bacteria to lower methanogenesis without altering fibre digestion has been demonstrated under experimental conditions. Furthermore, non-H2 producing communities have been characterized in the digesta of certain ruminant species. In contrast, stimulating acetogenesis by inoculation with rumen acetogens or non-rumen acetogens have met with limited success in vitro and in vivo. Research has also concentrated on stimulating the ultilisation of metabolic hydrogen by sulphate reducing bacteria, but there remains concern over the toxicity of H2S in the host ruminant. Investigations of nitrate reducing bacteria which produce more NH3 and less toxic nitrite, have indicated promising results. Increasing the number of capnophilic bacteria which use CO2 and H2 to produce organic acids, succinic acid in particular, may decrease methane production. In isolation, several approaches have been shown to decrease enteric methane emissions, but often part of the changes observed are related to lowered organic matter digestion in the rumen. However, lowering methane production per unit product over the lifetime of an animal should be regarded as the central goal to decrease GHG from ruminant livestock systems. This highlights the need for integrated solutions to improve digestive efficiency, as well as fertility and health. In conclusion, any prospective solution to lower on-farm GHG emissions must be practical, cost effective and have no adverse effect on the profitability of ruminant meat and milk production. Recent research has indicated significant potential, but none of the strategies tested thus far satisfy all of the necessary criteria for immediate implementation.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Naomi Cristina Meister ◽  
Abmael da Silva Cardoso ◽  
Fernando Oliveira Alari ◽  
Nailson Lima Santos Lemos ◽  
Rosa Toyoko Shiraishi Frighetto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document