scholarly journals Multi-criteria optimization for planning volumetric-modulated arc therapy for prostate cancer

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257216
Author(s):  
Jongmoo Park ◽  
Jaehyeon Park ◽  
Sean Oh ◽  
Ji Woon Yea ◽  
Jeong Eun Lee ◽  
...  

We aimed to compare the volumetric-modulated arc therapy (VMAT) plans with or without multi-criteria optimization (MCO) on commercial treatment-planning systems (Eclipse, Varian Medical System, Palo Alto, CA, USA) for patients with prostate cancer. We selected 25 plans of patients with prostate cancer who were previously treated on the basis of a VMAT plan. All plans were imported into the Eclipse Treatment Planning System version 15.6, and re-calculation and re-optimization were performed. The MCO plan was then generated. The dosimetric quality of the plans was evaluated using dosimetric parameters and dose indices that account for target coverage and sparing of the organs at risk (OARs). We defined the rectum, bladder, and bilateral femoral heads. The VMAT-MCO plan offers an improvement of gross treatment volume coverage with increased minimal dose and reduced maximal dose. In the planning treatment volume, the Dmean and better gradient, homogeneity, and conformity indexes improved despite the increasing hot and cold spots. When implemented through the MCO plan, a steeper fall off the adjacent OARs in the overlap area was achieved to obtain lower dose parameters. MCO generated better sparing of the rectum and bladder through a tradeoff of the increasing dose to the bilateral femoral heads within the tolerable dose constraints. Compared with re-optimization and re-calculation, respectively, significant dose reductions were observed in the bladder (241 cGy and 254 cGy; p<0.001) and rectum (474 cGy and 604 cGy, p<0.001) with the MCO. Planning evaluation and dosimetric measurements showed that the VMAT-MCO plan using visualized navigation can provide sparing of OAR doses without compromising the target coverage in the same OAR dose constraints.

2018 ◽  
Vol 17 (4) ◽  
pp. 441-446 ◽  
Author(s):  
Jalil ur Rehman ◽  
Muhammad Isa ◽  
Nisar Ahmad ◽  
H. M. Noor ul Huda Khan Asghar ◽  
Zaheer A. Gilani ◽  
...  

AbstractBackgroundAccurate three-dimensional dosimetry is essential in modern radiotherapy techniques such as volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). In this research work, the PRESAGE® dosimeter was used as quality assurance (QA) tool for VMAT planning for head and neck (H&N) cancer.Material and methodComputer tomography (CT) scans of an Image Radiation Oncology Core (IROC) H&N anthropomorphic phantom with both IROC standard insert and PRESAGE® insert were acquired separately. Both CT scans were imported into the Pinnacle (9.4 version) TPS for treatment planning, where the structures [planning target volume (PTV), organs at risk) and thermoluminescent detectors (TLDs) were manually contoured and used to optimise a VMAT plan. Treatment planning was done using VMAT (dual arc: 182°–178°, 178°–182°). Beam profile comparisons and gamma analysis were used to quantify agreement with film, PRESAGE® measurement and treatment planning system (TPS) calculated dose distribution.ResultsThe average ratio of TLD measured to calculated doses at the four PTV locations in the H&N phantom were between 0·95 to 0·99 for all three VMAT deliveries. Dose profiles were taken along the left–right, the anterior–posterior and superior–inferior axes, and good agreement was found between the PRESAGE® and Pinnacle profile. The mean value of gamma results for three VMAT deliveries in axial and sagittal planes were found to be 94·24 and 93·16% when compared with film and Pinnacle, respectively. The average values comparing the PRESAGE® results and dose values calculated on Pinnacle were observed to be 95·29 and 94·38% in the said planes, respectively, using a 5%/3 mm gamma criteria.ConclusionThe PRESAGE® dose measurements and calculated dose of pinnacle show reasonable agreement in both axial and sagittal planes for complex dual arc VMAT treatment plans. In general, the PRESAGE® dosimeter is found to be a feasible QA tool of VMAT plan for H&N cancer treatment.


2015 ◽  
Vol 49 (3) ◽  
pp. 291-298 ◽  
Author(s):  
Christopher Amaloo ◽  
Daryl P. Nazareth ◽  
Lalith K. Kumaraswamy

Abstract Background. Volumetric modulated arc therapy (VMAT) has quickly become accepted as standard of care for the treatment of prostate cancer based on studies showing it is able to provide faster delivery with adequate target coverage and reduced monitor units while maintaining organ at risk (OAR) sparing. This study aims to demonstrate the potential to increase dose conformality with increased planner control and OAR sparing using a hybrid treatment technique compared to VMAT. Methods. Eleven patients having been previously treated for prostate cancer with VMAT techniques were replanned with a hybrid technique on Varian Treatment Planning System. Multiple static IMRT fields (2 to 3) were planned initially based on critical OAR to reduce dose but provide some planning treatment volume (PTV) coverage. This was used as a base dose plan to provide 30-35% coverage for a single arc VMAT plan. Results. The clinical VMAT plan was used as a control for the purposes of comparison. Average of all OAR sparing between the hybrid technique and VMAT showed the hybrid plan delivering less dose in almost all cases except for V80 of the bladder and maximum dose to right femoral head. PTV coverage was superior with the VMAT technique. Monitor unit differences varied, with the hybrid plan able to deliver fewer units 37% of the time, similar results 18% of the time, and higher units 45% of the time. On average, the hybrid plan delivered 10% more monitor units. Conclusions. The hybrid plan can be delivered in a single gantry rotation combining aspects of VMAT with regions of dynamic intensity modulated radiation therapy (IMRT) within the treatment arc.


2020 ◽  
Author(s):  
Tatsuya Kamima ◽  
Yoshihiro Ueda ◽  
Jun-ichi Fukunaga ◽  
Mikoto Tamura ◽  
Yumiko Shimizu ◽  
...  

Abstract Background: The aim of this study was to investigate the performance of the RapidPlan knowledge-based treatment planning system using models including registered pseudo-structures, and to determine how many structures are required for automatic optimization of volumetric modulated arc therapy (VMAT) for postoperative uterine cervical cancer. Methods: Pseudo-structures were retrospectively contoured for patients who had completed treatment at one of five institutions. For 22 patients, RPs were generated with a single optimization for models with two (RP_2), four (RP_4), or five (RP_5) registered structures, and the dosimetric parameters of these models were compared with a clinical plan with several optimizations. The total times for pseudo-structure creation and optimization were also measured.Results: Most dosimetric parameters showed no major differences between each RP. In particular, the rectum Dmax, V50Gy, and V40Gy with RP_2, RP_4, and RP_5 were not significantly different, and were lower than those of the clinical plan. In addition, the average proportions of plans achieving acceptable criteria for all dosimetric parameters were 98%, 99%, 98%, and 98% for the clinical plan, RP_2, RP_4, and RP_5, respectively. The average times for the creation and optimization of pseudo-structures were 105, 17, 21, and 29 minutes, for the clinical plan, RP_2, RP_4, and RP_5, respectively. Conclusions: The RapidPlan model with two registered pseudo-structures could generate clinically acceptable plans while saving time. This modeling approach using pseudo-structures could possibility be used for the VMAT planning process.


Sign in / Sign up

Export Citation Format

Share Document