scholarly journals Diagnosis of pine wilt disease using remote wireless sensing

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257900
Author(s):  
Sang-Kyu Jung ◽  
Seong Bean Park ◽  
Bong Sup Shim

Pine wilt disease caused by Bursaphelenchus xylophilus is a major tree disease that threatens pine forests worldwide. To diagnose this disease, we developed battery-powered remote sensing devices capable of long-range (LoRa) communication and installed them in pine trees (Pinus densiflora) in Gyeongju and Ulsan, South Korea. Upon analyzing the collected tree sensing signals, which represented stem resistance, we found that the mean absolute deviation (MAD) of the sensing signals was useful for distinguishing between uninfected and infected trees. The MAD of infected trees was greater than that of uninfected trees from August of the year, and in the two-dimensional plane, consisting of the MAD value in July and that in October, the infected and uninfected trees were separated by the first-order boundary line generated using linear discriminant analysis. It was also observed that wood moisture content and precipitation affected MAD. This is the first study to diagnose pine wilt disease using remote sensors attached to trees.

Nematology ◽  
2011 ◽  
Vol 13 (6) ◽  
pp. 653-659 ◽  
Author(s):  
Katsumi Togashi ◽  
Hiroko Maezono ◽  
Koji Matsunaga ◽  
Satoshi Tamaki

AbstractTo determine the relationship between resistance to pine wilt disease and the inhibition of nematode systemic dispersal in Pinus densiflora, a suspension of 200 Bursaphelenchus xylophilus was placed on the upper cut end of 5-cm-long, living or boiled branch sections of 17 clones of pine that had different resistance levels. Significantly more nematodes passed through boiled sections than living sections during 24 h. Living branches of the resistant P. densiflora clone group significantly suppressed the dispersal of B. xylophilus compared with those of the susceptible group, suggesting that the inhibition of nematode systemic dispersal was involved in the resistance mechanism of selected disease-resistant pine clones. However, there was no significant correlation between the resistance class and the mean number of nematodes passing through live branch sections within the resistant clone group. The reason for the lack of correlation is discussed in relation with the resistance mechanism.


Nematology ◽  
2012 ◽  
Vol 14 (5) ◽  
pp. 547-554 ◽  
Author(s):  
Hayami Kasuga ◽  
Katsumi Togashi

Bursaphelenchus xylophilus causes pine wilt disease in susceptible pine species. To determine whether B. xylophilus persists in forests containing Abies sachalinensis and Picea jezoensis, we performed inoculation experiments using ten or 15 seedlings of A. sachalinensis, P. jezoensis, Pinus densiflora and P. thunbergii. Inoculation of 15 000 B. xylophilus caused 20 and 7% mortality in A. sachalinensis and P. jezoensis seedlings, respectively, in the nursery, indicating low susceptibility of A. sachalinensis and a lack of susceptibility of P. jezoensis. By contrast, B. xylophilus caused 40 and 70% mortality in P. densiflora and P. thunbergii, respectively. Bursaphelenchus xylophilus was recovered at extremely low densities from stems of externally asymptomatic seedlings of the first two tree species 9.5 months after inoculation. Inoculation of B. xylophilus on excised stem sections of A. sachalinensis and P. jezoensis seedlings showed a greater increase in population density in the bark than xylem after 3 weeks, whereas that on P. densiflora stem sections showed no difference in nematode density between the two tissues. The results suggest that B. xylophilus may persist in forests containing A. sachalinensis and P. jezoensis, when there are insect vectors with affinity for the nematode.


Nematology ◽  
2003 ◽  
Vol 5 (4) ◽  
pp. 559-564 ◽  
Author(s):  
Katsumi Togashi ◽  
Koji Matsunaga

Abstract Differences among four isolates of Bursaphelenchus xylophilus and one of B. mucronatus in vulnerability to the inhibitory effect of Pinus densiflora on nematode dispersal were investigated by inoculating boiled and living branch sections 5 cm long. The intrinsic dispersal ability and vulnerability to the inhibitory effect of living branches differed among isolates. Additionally, the degree of branch inhibition of nematode dispersal was examined by inoculating the five isolates on 2.5 and 5.0 cm long, P. densiflora living branch sections. An increase in section length induced an 80% decrease in the number of nematodes of all isolates passing through the branch. The extent to which passing nematode number decreased as branch section length increased can be used to express susceptibility of pine species to pine wilt disease. Virulence had no relation to intrinsic and realised dispersal rates in B. xylophilus.


Nematology ◽  
2011 ◽  
Vol 13 (5) ◽  
pp. 521-528 ◽  
Author(s):  
Quang Le Dang ◽  
Seung Wan Son ◽  
Hyang-Mi Cheon ◽  
Gyung Ja Choi ◽  
Yong Ho Choi ◽  
...  

Abstract Pine wilt disease is a very complex disease known to be caused by the pine wood nematode, Bursaphelenchus xylophilus, and its accompanying bacteria. The phytotoxin-producing bacteria have been reported to be involved in the development of pine wilt disease. In this study, we attempted to characterise phytotoxins produced by Burkholderia arboris KRICT1, which was carried by the pine wood nematode. It produced phytotoxic compounds in the pine seedling assay, and the ethyl acetate (EtOAc) layer of the fermentation broth of the strain displayed phytotoxic activity on the pine callus of Pinus densiflora. One active compound was isolated from the EtOAc layer by repeated Sephadex LH-20 column chromatography and preparative TLC. Using mainly mass spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, the chemical structure was determined to be that of pyochelin (a mixture of two interconvertible diastereoisomers, pyochelin I and II). Pyochelin exposure reduced the viability of pine callus. Compared with phenylacetic acid, a phytotoxin produced by Bacillus spp. that was transmitted by B. xylophilus in Japan, pyochelin showed much stronger phytotoxicity. The results suggested that pyochelin might play a role in the wilting process of pine wilt disease.


1988 ◽  
Vol 54 (5) ◽  
pp. 606-615 ◽  
Author(s):  
Keiko KURODA ◽  
Toshihiro YAMADA ◽  
Kazuhiko MINEO ◽  
Hirotada TAMURA

2019 ◽  
Vol 49 (6) ◽  
pp. e12564
Author(s):  
Marta Salgueiro Alves ◽  
Anabela Pereira ◽  
Cláudia Vicente ◽  
Manuel Mota ◽  
Isabel Henriques

Nematology ◽  
2006 ◽  
Vol 8 (6) ◽  
pp. 869-879 ◽  
Author(s):  
Kazuyoshi Futai ◽  
Natsumi Kanzaki ◽  
Yuko Takeuchi

AbstractPine wilt disease causes ecological and economic damage in Japanese pine forests in spite of intensive effort to protect them from the pine wood nematode, Bursaphelenchus xylophilus. Pine trees infected with B. xylophilus emit a characteristic bouquet of volatile compounds bioactive to the vector beetle of the nematode, Monochamus alternatus, and potentially affecting symptom development inside the trees. To investigate the qualitative and quantitative properties of volatile compounds in the field, we profiled the volatile emissions in two Japanese black pine stands, one naturally suffering from pine wilt disease and the other artificially inoculated with B. xylophilus. In both pine stands, the emission of some terpenoids from the infected trees such as (−)-α-pinene, began to increase in summer, overlapping the oviposition season of the vector beetle, but peaked in the summer and autumn. These data suggest that the beetles may not necessarily depend on the tremendous quantity of volatiles alone when they search for suitable trees on which to oviposit.


2012 ◽  
Vol 134 (3) ◽  
pp. 521-532 ◽  
Author(s):  
Xin-rong Wang ◽  
Xi Cheng ◽  
Ya-dong Li ◽  
Jin-ai Zhang ◽  
Zhi-fen Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document