scholarly journals A contraction approach to dynamic optimization problems

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260257
Author(s):  
Leif K. Sandal ◽  
Sturla F. Kvamsdal ◽  
José M. Maroto ◽  
Manuel Morán

An infinite-horizon, multidimensional optimization problem with arbitrary yet finite periodicity in discrete time is considered. The problem can be posed as a set of coupled equations. It is shown that the problem is a special case of a more general class of contraction problems that have unique solutions. Solutions are obtained by considering a vector-valued value function and by using an iterative process. Special cases of the general class of contraction problems include the classical Bellman problem and its stochastic formulations. Thus, our approach can be viewed as an extension of the Bellman problem to the special case of nonautonomy that periodicity represents, and our approach thereby facilitates consistent and rigorous treatment of, for example, seasonality in discrete, dynamic optimization, and furthermore, certain types of dynamic games. The contraction approach is illustrated in simple examples. In the main example, which is an infinite-horizon resource management problem with a periodic price, it is found that the optimal exploitation level differs between high and low price time intervals and that the solution time paths approach a limit cycle.

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1109 ◽  
Author(s):  
Agnieszka Wiszniewska-Matyszkiel ◽  
Rajani Singh

We study general classes of discrete time dynamic optimization problems and dynamic games with feedback controls. In such problems, the solution is usually found by using the Bellman or Hamilton–Jacobi–Bellman equation for the value function in the case of dynamic optimization and a set of such coupled equations for dynamic games, which is not always possible accurately. We derive general rules stating what kind of errors in the calculation or computation of the value function do not result in errors in calculation or computation of an optimal control or a Nash equilibrium along the corresponding trajectory. This general result concerns not only errors resulting from using numerical methods but also errors resulting from some preliminary assumptions related to replacing the actual value functions by some a priori assumed constraints for them on certain subsets. We illustrate the results by a motivating example of the Fish Wars, with singularities in payoffs.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 45
Author(s):  
Wensheng Jia ◽  
Xiaoling Qiu ◽  
Dingtao Peng

In this paper, our purpose is to investigate the vector equilibrium problem of whether the approximate solution representing bounded rationality can converge to the exact solution representing complete rationality. An approximation theorem is proved for vector equilibrium problems under some general assumptions. It is also shown that the bounded rationality is an approximate way to achieve the full rationality. As a special case, we obtain some corollaries for scalar equilibrium problems. Moreover, we obtain a generic convergence theorem of the solutions of strictly-quasi-monotone vector equilibrium problems according to Baire’s theorems. As applications, we investigate vector variational inequality problems, vector optimization problems and Nash equilibrium problems of multi-objective games as special cases.


2012 ◽  
Vol 12 (10) ◽  
pp. 3176-3192 ◽  
Author(s):  
Ignacio G. del Amo ◽  
David A. Pelta ◽  
Juan R. González ◽  
Antonio D. Masegosa

2017 ◽  
Vol 50 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Tuncer Acar

Abstract The present paper deals with the rate of convergence of the general class of Durrmeyer operators, which are generalization of Ibragimov-Gadjiev operators. The special cases of the operators include somewell known operators as particular cases viz. Szász-Mirakyan-Durrmeyer operators, Baskakov-Durrmeyer operators. Herewe estimate the rate of convergence of Ibragimov-Gadjiev-Durrmeyer operators for functions having derivatives of bounded variation.


Sign in / Sign up

Export Citation Format

Share Document